ГОЛОГРАФИЯ


(от греч. holos — весь, полный и grapho — пишу), способ записи и восстановления волн. поля, основанный на регистрации интерференц. картины, к-рая образована волной, отражённой предметом, освещаемым источником света (п р е д м е т н а я волна), и когерентной с ней волной, идущей непосредственно от источника света (опорная волна; рис. 1, а). Зарегистрированная интерференц. картина наз. г о л о г р а м м о й. Голограмма, освещённая опорной волной, создаёт такое же амплитудно-фазовое пространств. распределение волн. поля, к-рое создавала при записи предметная волна. Т. о., в соответствии с Гюйгенса — Френеля принципом, голограмма преобразует опорную волну в копию предметной волны (рис. 1,6).
ГОЛОГРАФИЯ фото №1.
Рис. 1. Схемы получения голограммы (а) и восстановления волн. фронта (б); штриховкой показаны зеркала.
Основы Г. были заложены в 1948 физиком Д. Габором (Великобритания). Желая усовершенствовать электронный микроскоп, Габор предложил регистрировать информацию не только об амплитудах, но и о фазах электронных волн путём наложения на предметную волну попутной когерентной опорной волны. Модельные оптич. опыты Габора положили начало Г. Однако отсутствие мощных источников когерентного света не позволило ему получить качественных голографич. изображений. Второе рождение Г. пережила в 1962—63, когда амер. физики Э. Лейт и Ю. Упатниекс применили в кач-ве источника света лазер и разработали схему с наклонным опорным пучком, а Ю.Н. Денисюк осуществил запись голограммы в трёхмерной среде (см. ниже), объединив, т. о., идею Габора с цветной фотографией Липмана. К 1965—66 были созданы теор. и эксперим. основы Г. В последующие годы развитие Г. идёт гл. обр. по пути совершенствования её применений.
Пусть интерференц. структура, образованная опорной и предметной волнами, зарегистрирована позитивным фотоматериалом. Тогда участки голограммы с макс. пропусканием света будут соответствовать тем участкам фронта предметной волны, в к-рых её фаза совпадает с фазой опорной волны. Эти участки будут тем прозрачнее, чем большей была интенсивность предметной волны. Поэтому при последующем освещении голограммы опорной волной в её плоскости непосредственно за ней образуется то же распределение амплитуды и фазы, к-рое было у предметной волны, что и обеспечивает восстановление последней.
Для восстановления предметной волны голограмму освещают источником, создающим копию опорной волны. В результате дифракции света на интерференц. структуре голограммы в дифракц. пучке первого порядка восстанавливается копия предметной волны, образующая неискажённое мнимое изображение предмета, расположенное в том месте, где предмет находился при голографировании. В случае двухмерной голограммы одновременно восстанавливается сопряжённая волна минус первого порядка, образующая искажённое действит. изображение предмета. Углы, под к-рыми распространяются дифракц. пучки нулевых и первых порядков, определяются углами падения на фотопластинку предметной и опорной волн. В схеме Га-бора источник опорной волны и объект располагались на оси голограммы (осевая схема). При этом все три волны распространялись за голограммой в одном и том же направлении, создавая взаимные помехи. В схеме Лейта и Упатниекса такие помехи были устранены наклоном опорной волны (в неосевая схема).
Типы голограмм.
Структура голограммы зависит от способа формирования предметной и опорной волн и от способа записи интерференц. картины. Предмет освещается пучком когерентного света, рассеянная им световая волна, несущая информацию о предмете, падает на фотопластинку, освещаемую опорным пучком. В зависимости от взаимного расположения предмета и пластинки, а также от наличия оптич. элементов между ними, связь между амплитудно-фазовыми распределениями предметной волны в плоскостях голограммы и предмета различна. Если предмет лежит в плоскости голограммы или сфокусирован на неё (рис. 2, а), то амплитудно-фазовое распределение на голограмме будет тем же, что и в плоскости предмета (голограмма сфокусированного изображения).
ГОЛОГРАФИЯ фото №2.
Рис. 2. Схемы получения голограмм разл. типов: а — голограмма сфокусиров. изображения; б — голограмма Фраунгофера: в — голограмма Френеля; г — голограмма Фурье; д — безлинзовая фурье-голограмма; 1 — предмет; 2 — фотопластинка; Л — линза; f — фокусное расстояние линзы.
Когда предмет находится достаточно далеко от пластинки, либо в фокусе линзы Л (рис. 2, б), то каждая точка предмета посылает на пластинку параллельный световой пучок, при этом связь между амплитудно-фазовыми распределениями предметной волны в плоскости голограммы и в плоскости предмета даётся преобразованием Фурье (комплексная амплитуда предметной волны на пластинке — т. н. фурье-образ предмета). Голограмма в этом случае наз. голограммой Фраунгофера. Если комплексные амплитуды предметной и опорной волн явл. фурье-образами и предмета и опорного источника, то голограмму наз. голограммой Фурье. При записи голограммы Фурье предмет и опорный источник обычно располагают в фокусе линзы (рис. 2, г). В случае безлинзовой фурье-голограммы опорный источник располагают в плоскости предмета (рис. 2, д). При этом фронт опорной волны и фронты элем. волн, рассеянных отд. точками объекта, имеют одинаковую кривизну. В результате структура и св-ва голограммы практически такие же, как у фурье-голограммы. Голограммы Френеля образуются в том случае, когда каждая точка предмета посылает на пластинку сферич. волну (рис. 2, в). По мере увеличения расстояния между объектом и пластинкой голограммы Френеля переходят в голограммы Фраунгофера, а с уменьшением этого расстояния — в голограммы сфокусиров. изображений.
При встрече опорной и предметной волн в пр-ве образуется система стоячих волн, максимумы к-рых соответствуют зонам, в к-рых интерферирующие волны находятся в одной фазе, а минимумы — в противофазе. Для точечного опорного источника О1 и точечного предмета О2 поверхности максимумов и минимумов представляют собой систему гиперболоидов вращения (рис. 3). Пространств. частота v интерференц. структуры (величина, обратная её периоду) определяется углом а, под к-рым сходятся в данной точке световые лучи, исходящие от опорного источника и предмета: v=(2sin(a/2))/l, где l — длина волны. Плоскости, касательные к поверхности узлов и пучностей в каждой точке пр-ва, делят пополам угол a. В схеме Габора опорный источник и предмет расположены на оси голограммы, угол а близок к нулю и v минимальна. Осевые голограммы наз. также о д н о л у ч е в ы м и, т. к. используется один пучок света, часть к-рого рассеивается предметом и образует предметную волну, а другая часть, прошедшая через объект без искажения,— опорную волну.
ГОЛОГРАФИЯ фото №3.
Рис. 3. Пространственная интерференц. структура, образующаяся в случае точечных объекта O1 и источника света О2: I — расположение фотопластинки в схеме Га-бора; II —в схеме Лейта и Упатниекса (с наклонным пучком); III — при записи голограммы на встречных пучках; IV — при записи безлинзовой фурье-голограммы.
В схеме Лейта и Упатниекса когерентный наклонный опорный пучок формируется отдельно (д в у х л у ч е в а я голограмма). Для двухлучевых голограмм v выше, чем для однолучевых (требуются фотоматериалы с более высоким пространств. разрешением). Если опорный и предметный пучок падают на светочувствит. слой с разных сторон (а = 180°), то v максимальна и близка к 2/l (голограммы во встречных пучках). Интерференц. максимумы располагаются вдоль поверхности материала в его толще. Эта схема была впервые предложена Денисюком. Поскольку при освещении такой голограммы опорным пучком восстановленная предметная волна распространяется навстречу освещающему пучку, такие голограммы иногда наз. отражательными. Если толщина светочувствит. слоя d много больше расстояния между соседними поверхностями интерференц. максимумов, то голограмму следует рассматривать как объёмную. Если же запись интерференц. структуры происходит на поверхности слоя или если толщина слоя сравнима с расстоянием А между соседними элементами структуры, то голограммы наз. плоскими. Критерий перехода от двухмерных голограмм к трёхмерным: d?1,6d2/l.
Интерференц. структура может быть зарегистрирована светочувствит. материалом одним из след. способов: 1) в виде вариаций коэфф. пропускания света или его отражения. Такие голограммы при восстановлении волн. фронта модулируют амплитуду освещающей волны (см. МОДУЛЯЦИЯ КОЛЕБАНИЙ) и наз. амплитудными. 2) В виде вариаций коэфф. преломления или толщины (рельефа). Такие голограммы при восстановлении волн. фронта модулируют фазу освещающей волны и поэтому наз. ф а з о в ы м и. Часто одновременно осуществляется фазовая и амплитудная модуляции. Напр., обычная фотопластинка регистрирует интерференц. структуру в виде вариаций почернения, показателя преломления и рельефа. После отбеливания голограммы остаётся только фазовая модуляция.
Зарегистрированная на фотопластинке интерференц. структура обычно сохраняется долго, т. е. процесс записи отделён во времени от процесса восстановления (стационарные голограммы). Однако существуют светочувствит. среды (нек-рые красители, кристаллы, пары металлов), к-рые почти мгновенно реагируют фазовыми или амплитудными хар-ками на освещённость. В атом случае голограмма существует только во время воздействия на среду предметной и опорной волн, а восстановление волн. фронта производится одновременно с записью, в результате вз-ствия опорной и предметной волн с образованной ими же интерференц. структурой (динамические голограммы). На принципах динамич. Г. могут быть созданы системы постоянной и оперативной памяти, корректоры излучения лазеров, усилители изображений, устройства управления лазерным излучением, обращения волн. фронта.
Свойства голограмм.
а) Осн. св-во голограммы, отличающее её от фотогр. снимка, состоит в том, что на снимке регистрируется лишь распределение амплитуды падающей на неё предметной световой волны, в то время как на голограмме, кроме того, регистрируется и распределение фазы предметной волны относительно фазы опорной волны. Информация об амплитуде предметной волны записана на голограмме в виде контраста интерференц. рельефа, а информация о фазе — в виде формы и частоты интерференц. полос. В результате голограмма при освещении опорной волной восстанавливает копию предметной волны.
б) Св-ва голограммы, регистрируемой обычно на негативном фотоматериале, остаются такими же, как в случае позитивной записи -— светлым местам объекта соответствуют светлые места восстановленного изображения, а тёмным — тёмные. Это легко понять, принимая во внимание, что информация об амплитуде предметной волны заключена в контрасте интерференц. структуры, распределение к-рого на голограмме не меняется при замене позитивного процесса на негативный. При такой замене лишь сдвигается на p фаза восстановленной предметной волны, что незаметно при визуальном наблюдении, но иногда проявляется в голографич. интерферометрии (см. ниже).
в) В тех случаях, когда при записи голограммы свет от каждой точки объекта попадает на всю поверхность голограммы, каждый малый участок последней способен восстановить всё изображение объекта. Однако меньший участок голограммы восстановит меньший участок волн. фронта, несущего информацию об объекте. Если этот участок будет очень мал, то кач-во восстановленного изображения ухудшается. В случае голограмм сфокусиров. изображения каждая точка объекта посылает свет на соответствующий ей малый участок голограммы. Поэтому фрагмент такой голограммы восстанавливает лишь соответствующий ему участок объекта.
г) Полный интервал яркостей, передаваемый фотогр. пластинкой, как правило, не превышает одного-двух порядков, между тем реальные объекты часто имеют гораздо большие перепады яркостей. В голограмме, обладающей фокусирующими св-вами, используется для построения наиб. ярких участков изображения весь свет, падающий на всю её поверхность, и она способна передать градации яркости до пяти-шести порядков.
д) Если при восстановлении волн. фронта освещать голограмму опорным источником, расположенным относительно голограммы так же, как и при её экспонировании, то восстановленное мнимое изображение совпадает по форме и положению с самим предметом. При изменении положения восстанавливающего источника, при изменении его длины волны l или ориентации голограммы и её размера соответствие нарушается. Как правило, такие изменения сопровождаются аберрациями восстановленного изображения.
е) Мин. расстояние между двумя соседними точками предмета, к-рые можно ещё увидеть раздельно при наблюдении изображения предмета с помощью голограммы, наз. разрешающей способностью голограммы. Она растёт с увеличением размеров голограммы. Для круглой голограммы с диаметром D угл. разрешение dj=1,22l/D; для голограммы квадратной формы со стороной квадрата L:dj=l/L. Для большинства схем предельный размер голограммы определяется разрешающей способностью регистрирующего фотоматериала (см. ниже), т. к. с ростом размеров голограммы растёт угол между предметным и опорным пучками и пространств. частота n. Исключение составляет схема безлинзовой фурье-голографии, в к-рой v при увеличении размеров голограммы не увеличивается.
ж) Яркость восстановленного изображения определяется дифракционной эффективностью, равной отношению светового потока в восстановленной волне к световому потоку, падающему на голограмму при восстановлении. Она определяется типом голограммы, условиями её записи, а также св-вами регистрирующего материала (см. табл.).
МАКСИМАЛЬНО ДОСТИЖИМАЯ ДИФРАКЦИОННАЯ ЭФФЕКТИВНОСТЬ ГОЛОГРАММ, %
ГОЛОГРАФИЯ фото №4.
з) Если значения экспозиций в максимумах интерференц. структуры выходят за пределы линейного участка зависимости амплитудного пропускания от экспозиции, то запись голограммы становится нелинейной. Линейно зарегистрированную голограмму можно сравнить с дифракционной решёткой с синусоидальным распределением амплитудного пропускания, к-рая не образует дифракц. порядков выше первого. При нелинейной записи голограмма также представляет собой периодич. решётку, однако распределение амплитудного пропускания в этом случае может значительно отличаться от синусоидального из-за нелинейных искажений. Нелинейность проявляется в появлении волн высших порядков, а также в искажении амплитуд восстанавливаемых волн первого порядка. Влияние нелинейности на изображение сводится к усилению фона, появлению ореолов, искажению относит. интенсивностей разных точек объекта, а иногда и в появлении ложных изображений.
«Изображения», образованные дифрагиров. волнами высших порядков, имеют мало общего с самим предметом.
ГОЛОГРАФИЯ фото №5.
Рис. 4. Восстановление световой волны с помощью трёхмерной голограммы.
Однако в ряде случаев (напр., для голограмм сфокусиров. изображений) волны высших порядков всё же образуют изображения предмета, но распределение яркости в них, как правило, сильно искажено, а фаза изображения к-того порядка отличается в к раз от фазы изображения первого порядка. Это св-во используется для повышения чувствительности голографич. интерферометров в случае голограмм фазовых объектов.
Объёмные голограммы
представляют собой трёхмерные структуры, в к-рых поверхности узлов и пучностей зарегистрированы в виде вариаций показателя преломления или коэфф. отражения среды. Поверхности узлов и пучностей направлены по биссектрисе угла a, к-рый составляют предметный и опорный пучки. Такие многослойные структуры при освещении опорной волной действуют подобно трёхмерным дифракц. решёткам (рис. 4). Свет, зеркально отражённый от слоев, восстанавливает предметную волну.
Пучки, отражённые от разных слоев, усиливают друг друга, если они синфазны, т. е. разность хода между ними равна l (условие Липмана — Брэгга). Условие автоматически выполняется лишь для той длины волны, в свете к-рой регистрировалась голограмма. Это приводит к избирательности голограммы по отношению к длине волны источника, в свете к-рого происходит восстановление волн. фронта. Возникает возможность восстанавливать изображение с помощью источника света со сплошным спектром (лампа накаливания, Солнце). Если голограмма экспонировалась в свете, содержащем неск. спектр. линий (напр., синюю, зелёную и красную), то для каждой длины волны образуется своя трёхмерная интерференц. структура. Соответствующие длины волн будут выделяться из сплошного спектра при освещении голограммы, что приведёт к восстановлению не только структуры волны, но и её спектр. состава, т. е. к получению цветного изображения. Трёхмерные голограммы одновременно образуют только одно изображение (мнимое или действительное) и не дают волны нулевого порядка.
Источники света в голографии должны создавать когерентное излучение достаточно большой яркости. Временная когерентность определяет макс. разность хода l между предметным и опорным пучками, допустимую без уменьшения контраста интерференц. структуры. Эта величина определяется шириной спектральной линии Dl излучения (степенью монохроматичности): l=l2/Dl,. Пространств. когерентность излучения определяет способность создавать контрастную интерференц. картину световыми волнами, испущенными источником в разных направлениях. Для теплового источника она зависит от его размеров. Контраст К интерференц. картины в случае кругового источника диаметром d0 равен:
ГОЛОГРАФИЯ фото №6.
где I1 — ф-ция Бесселя 1-го порядка, в — угол при вершине образованного лучами конуса. Положив К?1/O2, имеем d0?1/2(l/q) , что и определяет максимально возможную протяжённость теплового источника света.
Лазерное излучение обладает высокой пространств. и врем. когерентностью при огромной мощности излучения. Для Г. стационарных объектов обычно используются лазеры непрерывного излучения, генерирующие в одной поперечной моде, в частности гелий-неоновый лазер (l= 6328. A) и аргоновый (l=4880 A, 5145 А). Для получения голограмм быстропротекающих процессов обычно применяют импульсные рубиновые лазеры (l=6943 A).
Светочувствительные материалы.
Г. предъявляет к регистрирующим материалам ряд требований, из к-рых важнейшее — достаточно высокая разрешающая способность. Макс. пространств. частота n структуры реализуется во встречных пучках (a=180°). Для гелий-неонового лазера и фотоэмульсии с показателем преломления n=l,5 n=4700 лин/м. Наиболее подходящий для Г. фотоматериал — фотопластинки ВРЛ, ЛОИ, ПЭ (последние два типа имеют разрешающую способность nмакс >5000 лин/мм) и фотоплёнка ФПГВ (n = 3000 лин/мм). Помимо галогеносеребряных фотоматериалов, применяют и др. среды, в т. ч. допускающие многократное повторение цикла запись — стирание, а в нек-рых случаях и регистрацию голограмм в реальном времени. К их числу относятся термопластики, халькогенидные фотохромные стёкла, диэлектрич. и ПП кристаллы. Голограммы могут также регистрироваться на магн. плёнках, жидких кристаллах, фотополимерах, фоторезистах, на нанесённых на подложку слоях металлов, на хромированной желатине и т. д.
Применения.
Записанные на голограмме световые волны при их восстановлении создают полную иллюзию существования объекта, неотличимого от оригинала. В пределах телесного угла, охватываемого голограммой, изображение объекта можно осматривать с разных направлений, т. е. оно явл. трёхмерным. Эти св-ва Г. используются в лекционных демонстрациях, при создании объёмных копий произведений искусства, голографич. портретов (изобразительная Г.). Трёхмерные св-ва голографич. изображений используются для исследования движущихся ч-ц, капель дождя или тумана, треков яд. ч-ц в пузырьковых камерах и искровых камерах. При этом голограмму создают с помощью импульсного лазера, а изображения восстанавливают в непрерывном излучении.
Объёмность изображения делает перспективным создание голографич. кино и телевидения. Гл. трудность — создание огромных голограмм, через к-рые как через окно одновременно могло бы наблюдать изображение большое число зрителей. Эти голограммы должны быть динамическими, т. е. меняться во времени в соответствии с изменениями, происходящими с объектом. Пока голографич. кино используется только в физ. эксперименте для исследования быстропротекающих процессов. Голографич. телевидение также встретилось с трудностями создания динамич. сред в передающей и приёмной частях телевиз. системы. Другая трудность состоит в недостаточно большой полосе пропускания телевиз. канала, к-рую необходимо увеличить на неск. порядков для передачи трёхмерных движущихся сцен. С помощью Г. решается проблема визуализации акустич. полей (см. ГОЛОГРАФИЯ АКУСТИЧЕСКАЯ) и эл.-магн. полей в радиодиапазоне (см. РАДИОГОЛОГРАФИЯ).
Если поместить голограмму на то место, где она экспонировалась, и осветить опорным пучком, то восстановится волна, рассеивавшаяся объектом во время экспозиции. Если же объект не убирать, то можно одновременно наблюдать две волны: непосредственно идущую от объекта и восстановленную голограммой. Эти волны когерентны и могут интерферировать. Если с объектом происходят к.-л. изменения, ведущие к фазовым искажениям рассеянной им волны (напр., деформация или изменение коэфф. преломления), то это скажется на виде наблюдаемой картины. Появятся интерференц. полосы, форма к-рых однозначно связана с изменениями. На этом основана голографич. интерферометрия, где, как и в обычной интерферометрии, происходит сравнение неск. волн. Наблюдаемая интерференц. картина указывает на различие форм сравниваемых волн, однако в обычной интерферометрии они формируются одновременно или с очень небольшой временной задержкой, макс. величина к-рой определяется временем когерентности (?10-4— 10-5 с). Голограмма же позволяет зафиксировать световую волну и восстановить её копию в любой момент времени. Поэтому голографич. интерферометрия не связана с требованием одновременности формирования волн. Эта же особенность снизила требования к качеству оптич. деталей, т. к. обе интерферирующие волны, проходя по одному и тому же каналу, одинаково искажаются погрешностями оптики.
С помощью голограммы можно восстановить интерференц. картины световых волн, рассеянных объектом в разных направлениях. Это позволяет изучать пространств. неоднородности показателя преломления. Одним из первых применений голографич. интерферометрии было исследование механич. деформаций.
Г. применяется для хранения и обработки информации. Информация об объекте, записанная в виде интерференц. структуры, однородно распределена на большой площади. Это обусловливает высокую плотность записи информации и её большую надёжность. Обработка записанного на голограмме массива информации световым пучком происходит одновременно по всей голограмме (с огромной скоростью).
С помощью голографич. устройств осуществляются различные волн. преобразования, в т. ч. обращение волн. фронта с целью исключения аберраций (см. ОБРАЩЁННЫЙ ВОЛНОВОЙ ФРОНТ).
Записывая голограммы в средах со спец. св-вами, можно воспроизводить состояние поляризации предметной волны и даже её изменение во времени.
Голограмма может быть изготовлена не только оптич. методом, но и рассчитана на ЭВМ (цифровая голограмма). Машинные голограммы используются для получения объёмных изображений не существующих ещё объектов. Машинные голограммы сложных оптич. поверхностей служат эталонами для интерференц. контроля поверхностей изделий.

Физический энциклопедический словарь. — М.: Советская энциклопедия..1983.


Синонимы:
микроголография


Смотреть больше слов в «Физической энциклопедии»

ГОЛОГРАФИЯ АКУСТИЧЕСКАЯ →← ГОЛДСТОУНОВСКИЙ БОЗОН

Синонимы слова "ГОЛОГРАФИЯ":

Смотреть что такое ГОЛОГРАФИЯ в других словарях:

ГОЛОГРАФИЯ

(от греч. hólos — весь, полный и ...графия)        метод получения объёмного изображения объекта, основанный на интерференции волн. Идея Г. была впервы... смотреть

ГОЛОГРАФИЯ

ГОЛОГРАФИЯ. -и, ж. (спец.). Получение объемного изображения, основанноена взаимном действии (наложении друг на друга) световых волн. II прил.голографический, -ая, -ое.... смотреть

ГОЛОГРАФИЯ

голография ж. Фотографический метод записи и воспроизведения объемного изображения объекта, основанный на взаимодействии (наложении) двух световых волн.<br><br><br>... смотреть

ГОЛОГРАФИЯ

голография ж.holography

ГОЛОГРАФИЯ

голография сущ., кол-во синонимов: 1 • микроголография (1) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: микроголография

ГОЛОГРАФИЯ

Первые голограммы получил в 1947 году венгерский физик Деннис Габор, работавший тогда в Англии. Это название восходит к словам «холос» (весь, полностью) и «грамма» (написание). До изобретения венгерского ученого любая фотография была плоской. Она передавала лишь два измерения предмета. Глубина пространства ускользала от объектива. В поисках решения Габор отталкивался от одного известного факта. Лучи света, отброшенные трехмерным объектом, достигают фотопленки в разные моменты времени. И все они проделывают различный путь за разное время. Говоря научным языком: все волны приходят с фазовым смещением. Смещение зависит от формы предмета. Ученый пришел к выводу, что объем любого предмета можно выразить через разность фаз отраженных световых волн. «Конечно, человеческий глаз не в состоянии уловить это запаздывание волн, – пишет в журнале «Всемирный следопыт» Николай Малютин, – ибо оно выражается в очень маленьких промежутках времени. Данную величину надо преобразовать в нечто более осязаемое, например в перепады яркости. Это и удалось ученому, прибегнувшему к одному трюку. Он решил наложить волну, отраженную от предмета – то есть искаженную – на попутную ("опорную") волну. Происходила "интерференция". Там, где встречались гребни двух волн, они усиливались – там появлялось светлое пятно. Если же гребни волны накладывались на впадину, волны гасили друг друга, там наблюдалось затемнение. Итак, при взаимном наложении волн возникает характерная интерференционная картина, чередование тонких линий, белых и черных. Эту картину можно запечатлеть на фотопластинке – голограмме. Она будет содержать всю информацию об объеме предмета, попавшего в объектив. Чтобы "объемный портрет" получился очень точным и детальным, надо использовать световые волны одинаковой фазы и длины. При дневном или искусственном освещении такой фокус не пройдет. Ведь свет обычно представляет собой хаотическую смесь волн разной длины. В нем есть все краски: от коротковолнового голубого излучения до длинноволнового красного. Эти световые компоненты самым причудливым образом сдвинуты по фазе». Поскольку источников когерентного света в то время не существовало, ученый использовал излучение ртутной лампы, «вырезав» из него с помощью различных ухищрений очень узкую спектральную полоску. Однако мощность светового потока при этом становилась такой мизерной, что на изготовление голограммы требовалось несколько часов. Само качество голограмм оказалось весьма низким. Причины были в несовершенстве и источника света, и самой оптической схемы записи. Дело в том, что при записи голограммы возникает сразу два изображения по разные стороны пластинки. У венгерского ученого одно из них всегда оказывалось на фоне другого, и при их фотографировании резким оказывалось только одно изображение, в то время как второе создавало на снимке размытый фон. Чтобы в таком случае увидеть изображение на голограмме, ее нужно просветить насквозь излучением той же длины волны, которая применялась при записи. Но есть и очевидное преимущество: такое объемное изображение создается любым, даже самым маленьким участком голограммы-пластинки, вследствие того, что луч, рассеиваемый каждой точкой предмета, освещает голограмму полностью. Выходит, любая ее точка хранит информацию обо всей освещенной поверхности объекта. Появление лазера дало новый толчок развитию голографии, поскольку его излучение обладает всеми необходимыми качествами: оно когерентно и монохроматично. В 1962 году в США физики Эммет Лейт и Юрис Упатниекс создали оптическую схему топографической установки, которая с некоторыми изменениями используется до сих пор. Для того чтобы устранить наложения картинок, лазерный луч расщепляют на два и направляют на пластинку под разными углами. В результате голографические картинки формируются независимыми лучами, идущими по разным направлениям. Другой принципиально новый способ голографирования удалось создать российскому физику Юрию Николаевичу Денисюку. Ученый использовал интерференцию встречных пучков света. Попадая на пластинку с разных сторон, пучки складываются в слое фотоэмульсии, формируя объемную голограмму. С появлением лазера давняя идея Габора наконец-то была реализована. В 1971 году ученый получил за свое изобретение Нобелевскую премию по физике. В 1969 году Стивен Бентон придумал способ изготовления голограмм при обычном, белом свете. «Для этого, – отмечает Малютин, – с помощью фотошаблона – тонкого слоя с множеством микрошлицов – надо изготовить «мастер-голограмму» и копировать ее голографическим способом. Шлицевой шаблон, наподобие призм, расщепляет дневной свет на основные цвета спектра. В каждый из шлицов входит световой пучок одной-единственной длины волны. Это обеспечивает интерференцию и помогает получить картинку, яркую, разноцветную, сверкающую разными красками в зависимости от угла зрения, – ту самую голограмму, к которому мы привыкли за последние годы». Главное преимущество цветной голографии кроется в том, что ее можно копировать машинным способом, используя определенную технику тиснения. Красочную копию экспонируют на особый светочувствительный слой – фоторезистный лак. Этот материал отличается высокой разрешающей способностью. (Его применяют, например, в микролитографии, чтобы нанести на плату те или иные элементы микросхемы.) В нашем случае, при массовом тиражировании голограмм, вначале берут цифровую камеру и фотографируют объект со всех сторон. Компьютер соединяет отдельные снимки. И вот трехмерное изображение готово. Затем в лаборатории лазер «гравирует» эту картинку на фоточувствительной пластине. Получается тонкий поверхностный рельеф. С помощью электролиза «гравюру» наносят на никелевую матрицу. Матрица нужна для массового тиражирования голограмм. Их оттиски – по методу горячего тиснения – получают на металлической фольге. Теперь, как только луч света падает на голограмму, она начинает играть всеми цветами радуги. Среди этого многоцветья предстает перед зрителем изображенный предмет. Подобные голограммы дешевы. Изготовить их можно в любом количестве, лишь бы было оборудование. Такие голограммы используют во всем мире в качестве наклеек на товарные упаковки и документы. Они служат прекрасной защитой от подделок: скопировать голографическую запись очень трудно. Можно создавать голограммы, на которых изображены предметы, не существующие в реальности. Достаточно компьютеру задать форму объекта и длину волны падающего на него света. По этим данным компьютер рисует картину интерференции отраженных лучей. Пропустив световой пучок сквозь искусственную голограмму, можно увидеть объемное изображение придуманного предмета. По мнению Сергея Транковского: «Настоящим подарком голография стала для инженеров: теперь они могут исследовать и регистрировать процессы и явления, описанные порой только теоретически. Например, лопатки турбореактивного авиационного двигателя во время работы нагреваются до сотен градусов и деформируются. Каким образом распределяется при этом напряжение в детали, где находится ее слабое место, угрожающее разрушением, – определить это прежде было либо крайне сложно, либо вообще невозможно. С помощью голографических методов такие исследования проводят без особого труда. Освещенная лазерным светом, голограмма восстанавливает световую волну, отраженную деталью при съемке, и изображение появляется там, где раньше находилась деталь. Если же деталь осталась на месте, возникают сразу две волны: одна идет непосредственно от объекта, другая – от голограммы. Эти волны когерентны и могут интерферировать. В том случае, если объект во время наблюдения подвергся деформации, его изображение покрывается полосами, по которым судят о характере изменений. Методы топографического контроля очень удобны. Они позволяют измерять величину деформации деталей и амплитуду их вибрации, исследовать поверхности предметов сложной формы, следить за точностью изготовления как очень больших изделий (например, зеркал диаметром в несколько метров для телескопов), так и миниатюрных линз (как в микроскопе). Объект может плохо отражать свет, иметь неровную поверхность, быть совершенно прозрачным – на качество голограммы это не влияет. Благодаря мощным лазерным импульсам голограммы записывают за тысячные доли секунды. А потому сейчас можно изучать взрывы, электрические разряды и потоки газов, движущиеся со сверхзвуковой скоростью». С помощью голограммы можно видеть сквозь матовое стекло или другую рассеивающую свет преграду. С рассеивателя снимают голограмму и совмещают одно из восстановленных с нее изображений с самим рассеивателем. Световые волны, идущие навстречу друг другу от голограммы и от рассеивателя, складываются и взаимно уничтожаются. Преграда исчезает, а предмет, лежащий за ней, становится виден во всех подробностях. У современных технологов появилась новая идея. Она основана на способности лазера по заданной программе «сделать» из заготовки деталь любой формы и размера. Достаточно внутрь технологического лазера вставить голограмму эталонной детали, чтобы избавиться от необходимости писать программу и настраивать лазерную установку. Голограмма сама «подберет» такую конфигурацию луча и распределение его интенсивности, что «вырезанная» деталь будет точной копией эталона. Надо обратить внимание на еще один, очень похожий способ выделения полезных сигналов, который называется оптической фильтрацией, или распознаванием образов. Подобным образом можно отыскивать нужные изображения среди множества других похожих, например отпечатков пальцев. Для этого с эталона необходимо сделать голограмму, а затем поставить на пути светового пучка, отраженного от проверяемого объекта. Голограмма пропустит свет только от объекта, полностью идентичного эталону, «бракуя» другие изображения. Яркое пятно на выходе оптического фильтра – сигнал, что объект обнаружен. Примечательно, что поиск ведется с огромной скоростью, недостижимой при использовании других методов, поскольку он может вестись автоматически. «Голографические методы, – пишет Транковский, – применимы не только к свету – электромагнитному излучению, но и к любым другим волнам. В частности, предмет, погруженный в непрозрачную или мутную жидкость, можно разглядеть с помощью звука. Излучатели акустических колебаний создают в жидкости две когерентные волны. Одна (предметная) «озвучивает» предмет, вторая (опорная) – поверхность жидкости. Их интерференция вызывает на ней рябь – так называемую акустическую голограмму. Освещая ее пучком лазерного света, восстанавливают объемное изображение предмета, лежащего в воде. Впрочем, поступают и по-другому: сигнал от системы миниатюрных микрофонов записывают на фотопластинку в виде полос почернения, а потом восстанавливают с нее объемное изображение лучом лазера».... смотреть

ГОЛОГРАФИЯ

ГОЛОГРАФИЯособый фотографический метод, при котором с помощью лазера регистрируются, а затем восстанавливаются изображения трехмерных объектов, в высшей степени похожие на реальные. Такая фотографическая запись называется голограммой. При освещении лазером голограмма формирует изображение, которое представляет собой точную копию исходного трехмерного объекта и обнаруживает все свойства таких объектов, например изменение перспективы при перемещении наблюдателя. Метод голографии, применяемый в основном для регистрации информации, которую несет свет, отражающийся от некоего объекта или проходящий сквозь него, пригоден отнюдь не только для видимого света. Теоретически этот метод приложим ко всем другим волновым явлениям - звуковым волнам, сверхвысокочастотному, инфракрасному, рентгеновскому и электронному излучению. Этим и объясняется тот интерес, который вызывает голография; однако из-за практических трудностей ее пока не удалось применить к электронам и в рентгеновской области спектра. См. также ЛАЗЕР.Суть метода голографии. Пучок света, создаваемый лазером, отличается от света, испускаемого обычными источниками, например электролампой, в двух отношениях. Во-первых, он монохроматичен, т.е. характеризуется только одной длиной волны. Во-вторых, он когерентен, т.е. гребни и впадины каждой его волны согласуются с гребнями и впадинами каждой другой волны. Если рассматривать пучок света как последовательность волновых фронтов, лазерный луч представляет собой такой луч, в котором все точки волнового фронта согласованы по фазе.При взаимном наложении двух когерентных волновых фронтов (в месте пересечения двух когерентных пучков) происходит т.н. интерференция: волновые фронты усиливают друг друга, если совпадают по фазе, и ослабляют, если не согласуются по фазе. На интерференции и основана голография.Одна из возможных схем регистрации голограмм трехмерных объектов представлена на рисунке. Здесь когерентный свет лазера разделяется на два пучка. Одним пучком освещается объект, который необходимо зарегистрировать; свет, отражающийся от объекта, падает на фотографическую пластинку или другую фоточувствительную регистрирующую среду. Другой пучок, называемый опорным, направляется зеркалом под некоторым углом на ту же фотографическую пластинку, где его волновой фронт налагается на волновой фронт, пришедший от объекта. В результате взаимного наложения двух когерентных волновых фронтов возникает интерференционная картина, которая и регистрируется на фотографической пластинке как изменения плотности почернения - увеличение плотности почернения в тех местах, где волновые фронты совпадают по фазе, и уменьшение плотности почернения там, где они пришли не в фазе. Эта запись интерференционной картины и называется голограммой.Обычно голограмма не обнаруживает никакого сходства с зарегистрированным объектом; это просто какой-то набор темных и светлых пятен, в которых не угадывается никакого смысла. Но, будучи интерференционной картиной, голограмма содержит информацию весьма особого свойства: это запись не только амплитудных, но и фазовых характеристик волнового фронта, отразившегося от объекта. (Амплитуда равна половине разности высот гребня и впадины волны. Чем больше амплитуда, тем интенсивнее свет.) Если теперь объект удалить, а на голограмму направить опорный пучок (т.е. такой же пучок света, как и тот, которым она была записана), то она сформирует волновой фронт, несущий всю ту информацию, которую нес первоначальный волновой фронт. Таким образом, голограмма воссоздает волновые фронты, исходившие от объекта, хотя самого объекта в этом месте уже нет.Применение голографии. Основные особенности голографии, отличающие ее от фотографии, таковы: 1) это запись интерференционной картины, содержащая не только амплитудную, но и фазовую информацию, тогда как обычная фотография - это запись только интенсивностей света, не содержащая фазовой информации; 2) при регистрации голограммы нет необходимости в фокусировке, голограмма чаще всего не имеет сходства с объектом; 3) голограмма способна восстанавливать точную копию волнового фронта, идущего от объекта (если объект трехмерный, она восстанавливает трехмерное изображение); 4) изменяя угол между опорным пучком и волновым фронтом, идущим от объекта, можно на одном участке фотографической пластинки записать более одной голограммы; 5) в большинстве случаев для восстановления изображения достаточно любой малой части голограммы; если голограмма повреждена или частично уничтожена, она все равно восстановит изображение.Эти и некоторые другие важные особенности голограмм привлекли внимание многих исследователей, стремившихся довести голографию до практического применения. На "объемных голограммах", полученных с регистрацией интерференционной картины по толщине фотоэмульсионного слоя на фотопластинке, была продемонстрирована возможность восстановления многоцветных трехмерных изображений при освещении белым светом.Весьма перспективным представляется применение голографии в микроскопии. Благодаря возможности спокойно исследовать трехмерный объект, после того как записана его голограмма, устраняются некоторые трудности, связанные с визуальным исследованием объектов при большом увеличении. То, что вместо самого объекта рассматривается его восстановленное голографическое изображение, не мешает исследователю использовать метод фазового контраста и другие методы микроскопии. Более того, этим могут быть существенно уменьшены трудности, связанные с подготовкой образца, в ходе которой объект может оказаться деформированным. В данной области ведутся интенсивные разработки.Голография привнесла много нового в интерферометрию - область прецизионной измерительной техники, основанной на применении интерференции. Был создан ряд голографических методов, позволяющих получать восстановленное изображение объекта вместе с волновым фронтом от того же самого объекта после какой-либо его деформации, столь малой, что ее невозможно обнаружить другими методами. На интерференционной картине, возникающей при взаимном наложении двух волновых фронтов, выявляются деформационные искажения порядка длины волны света. Голографическими методами можно исследовать с интерферометрической точностью любые объекты; не требуется, чтобы их поверхности были оптического или близкого к оптическому качества.Поиски возможностей применения голографии продолжаются. В области т.н. оптической фильтрации и оптической обработки данных удалось достичь некоторого успеха при использовании специальных голограмм для распознавания особенностей рельефа на аэрофотоснимках. Голографические методы облегчают обработку радиолокационной информации; они нашли применение при расшифровке данных бортовых самолетных РЛС. Ряд научных организаций работает над устранением еще имеющихся трудностей.Методами, аналогичными оптическим, были получены акустические голограммы - записи картин интерференции звуковых волн. Были сделаны голограммы объектов, находящихся под водой; в ряде лабораторий ведутся исследования возможностей применения голографических методов при ультразвуковом просвечивании человеческого тела. Результаты такого просвечивания можно представить в виде оптического изображения.Методами, аналогичными методам оптической и акустической голографии, можно получать голограммы в сверхвысокочастотном излучении. Специальные СВЧ-голограммы, зарегистрированные с борта самолета, позволяют получать изображения местности с высоким разрешением рельефа.Историческая справка. Основные принципы голографии сформулировал в 1947 Д.Габор из Королевского научно-технического колледжа в Лондоне. Однако метод не находил практического применения до начала 1960-х годов, когда появился лазер. Применив лазер и усовершенствовав первоначальный голографический метод, Э.Лейт и Ю.Упатниекс из университета штата Мичиган получили голограммы, которые давали необычайно похожие на реальность трехмерные изображения. В 1962 Лейт и Упаниекс представили свой метод лазерной голографии. После этого метод голографии начал быстро развиваться. Были разработаны голограммы, позволяющие восстанавливать изображение в белом свете; активно ведутся исследования в направлении применения голографии для обработки данных.... смотреть

ГОЛОГРАФИЯ

holography* * *гологра́фия ж.holographyакусти́ческая гологра́фия — acoustic holographyамплиту́дно-контра́стная гологра́фия — amplitude-contrast holog... смотреть

ГОЛОГРАФИЯ

(от греч. holos - весь, полный и ...графия) - область науки и техники, разрабатывающая методы регистрации (записи) и воспроизведения информации об объе... смотреть

ГОЛОГРАФИЯ

ГОЛОГРАФИЯ[< гр. holos - весь + grapho - пишу] - метод получения объемного изображения предмета, основанный на интерференции (ИНТЕРФЕРЕНЦИЯ) лучей свет... смотреть

ГОЛОГРАФИЯ

ж.holography- акустическая голография- безлинзовая голография- внеосевая голография- высокоскоростная голография- голография быстропротекающих процессо... смотреть

ГОЛОГРАФИЯ

(от греч. hоlos - весь, полный и ...графин), метод записи, воспроизведения и преобразования волновых полей, основанный на интерференции волн. Предложен... смотреть

ГОЛОГРАФИЯ

ГОЛОГРАФИЯ, процесс создания голограммы. Одна или несколько фотографий накладываются на одну пленку или пластину с использованием интерференции между д... смотреть

ГОЛОГРАФИЯ

[g r άj w (графо) — пишу] — метод регистрации и воспроизведения волновых полей. В частности, может быть реализован фотографическими способами. При этом в отличие от традиционной фотографии на фотопластинке регистрируется не изображение предмета, а интерференционная картина, возникающая при наложении излучения, распространяющегося от объекта, и световых волн, исходящих непосредственно от источника света. При освещении голограммы источником, использовавшимся при съемке, за ней возникает объемное изображение объекта, неотличимое от оригинала. Эффект голографии применим при распознавании геол. объектов, при идентификации уникальных образцов, исследовании не доступных микроскопическому изучению изогнутых поверхностей, в музейном деле — для получения изображений морфологических деталей, не воспроизводимых слепками и фотографиями, и др. <br><p class="src"><em><span itemprop="source">Геологический словарь: в 2-х томах. — М.: Недра</span>.<span itemprop="author">Под редакцией К. Н. Паффенгольца и др.</span>.<span itemprop="source-date">1978</span>.</em></p><b>Синонимы</b>: <div class="tags_list">микроголография</div><br><br>... смотреть

ГОЛОГРАФИЯ

(от греч. holos — весь, полный и grapho — пишу)   метод получения объекта, основанный на интерференции волн. Предложен Д.Табором (США) в 1948. На фотоп... смотреть

ГОЛОГРАФИЯ

1) Орфографическая запись слова: голография2) Ударение в слове: гологр`афия3) Деление слова на слоги (перенос слова): голография4) Фонетическая транскр... смотреть

ГОЛОГРАФИЯ

ГОЛОГРАФИЯ (от греч . holos - весь, полный и ...графия), метод записи, воспроизведения и преобразования волновых полей, основанный на интерференции волн. Предложен Д. Габором в 1948. Голография позволяет получать изображение объектов. На фоточувствительный слой одновременно с "сигнальной" волной, рассеянной объектом, направляют "опорную" волну от того же источника света. Возникающая при интерференции этих волн картина, содержащая информацию об объекте, фиксируется на светочувствительной поверхности. Она называется голограммой. При облучении голограммы или ее участка опорной волной можно увидеть объемное изображение объекта. Голография применима к волнам любой природы и любого диапазона частот; используется в физике и различных областях техники, в частности для распознавания образов, кодирования информации, в акустике и т. п.<br><br><br>... смотреть

ГОЛОГРАФИЯ

ГОЛОГРАФИЯ (от греч. holos - весь - полный и ...графия), метод записи, воспроизведения и преобразования волновых полей, основанный на интерференции волн. Предложен Д. Габором в 1948. Голография позволяет получать изображение объектов. На фоточувствительный слой одновременно с "сигнальной" волной, рассеянной объектом, направляют "опорную" волну от того же источника света. Возникающая при интерференции этих волн картина, содержащая информацию об объекте, фиксируется на светочувствительной поверхности. Она называется голограммой. При облучении голограммы или ее участка опорной волной можно увидеть объемное изображение объекта. Голография применима к волнам любой природы и любого диапазона частот; используется в физике и различных областях техники, в частности для распознавания образов, кодирования информации, в акустике и т. п.<br>... смотреть

ГОЛОГРАФИЯ

- (от греч. holos - весь - полный и ...графия), метод записи,воспроизведения и преобразования волновых полей, основанный наинтерференции волн. Предложен Д. Габором в 1948. Голография позволяетполучать изображение объектов. На фоточувствительный слой одновременно с""сигнальной"" волной, рассеянной объектом, направляют ""опорную"" волну оттого же источника света. Возникающая при интерференции этих волн картина,содержащая информацию об объекте, фиксируется на светочувствительнойповерхности. Она называется голограммой. При облучении голограммы или ееучастка опорной волной можно увидеть объемное изображение объекта.Голография применима к волнам любой природы и любого диапазона частот;используется в физике и различных областях техники, в частности дляраспознавания образов, кодирования информации, в акустике и т. п.... смотреть

ГОЛОГРАФИЯ

ж. olografia f - акустическая голография- двухмерная голография- диагностическая голография- динамическая голография- звуковая голография- голография ... смотреть

ГОЛОГРАФИЯ

holography– внеосевая голография– голография внестендовая– двухмерная голография– двухэкспозиционная голография– диагностическая голография– звуковая г... смотреть

ГОЛОГРАФИЯ

гр. весь, полный + графия) — метод записи, воспроизведения и преобразования волновых полей, основанный на интерференции волн (см. Интерференция). Предложен Д. Габором в 1948 г. Голография позволяет получать объемное изображение объектов. На фоточувствительный слой одновременно с «сигнальной» волной, рассеянной объектом, направляют «опорную» волну от того же источника света. (См. Интерференция волн). Возникающая при интерференции этих волн картина, фиксируемая на светочувствительной поверхности, называется голограммой (см. Голограмма). При облучении голограммы или ее участка опорной волной можно увидеть объемное изображение объекта. Голография применима к волнам любой природы и любого диапазона частот. ... смотреть

ГОЛОГРАФИЯ

(от греч. holos — весь и граф) — оптический метод получения объемного (полного), изображения предмета (не плоского, как в обычной фотографии), основанный на явлении интерференции (сложении) двух лучей когерентного света (излучения) — одного от источника, так называемого опорного луча (как правило, луча лазера) и другого от самого предмета, освещаемого лазером. Запись интерференции производится на фотопластинку, а изображение на ней называется голограммой. Явление голографии открыто английским физиком Деннисом Габором (1948 г.). Начала современного естествознания. Тезаурус. — Ростов-на-Дону.В.Н. Савченко, В.П. Смагин.2006. Синонимы: микроголография... смотреть

ГОЛОГРАФИЯ

Фол Фляга Флор Флаг Фира Филя Фил Фигляр Фигаро Фига Фиал Фал Фаг Роля Рол Рог Рия Рифя Рифля Риф Рио Рига Риал Риа Рая Рафия Раф Рао Рало Раия Ория Орига Оргия Орг Орало Оля Олифа Олигофаг Оао Лоро Лори Лор Логогриф Логограф Логия Лог Лифо Лиф Лира Лиго Лига Ларго Лаг Ирга Иол Игра Иго Игла Грог Гриф Григ Графология Фолио Фора Форо Графолог Графия Граф Гофр Фра Горфо Горло Фрг Фри Гори Горал Гор Голография Фрол Голограф Фря Голо Голиаф Голгофа Гол Гога Глория Яга Глог Глия Ярл Гифа Гиф Гиря Гирло Гаф Гариг Галя Гало Ария Агрология Агро Агор Яро Аил Аир Аля Арго Гига Гигро Глиф... смотреть

ГОЛОГРАФИЯ

голография [гр. hofos весь + .. .ера-фия] - метод получения объемного изображения предмета, основанный на интерференци. двух лучей света - от источника и от предмета (см. голограмма); при освещении голограммы светом той же длины волны, что и у опорного луча, в результате дифракции света возникает объемное (при определенных условиях цветное) изображение предмета; кроме оптической голографии существует акустическая г. <br><br><br>... смотреть

ГОЛОГРАФИЯ

корень - ГОЛО; корень - ГРАФ; окончание - ИЯ; Основа слова: ГОЛОГРАФВычисленный способ образования слова: Бессуфиксальный или другой∩ - ГОЛО; ∩ - ГРАФ;... смотреть

ГОЛОГРАФИЯ

ГОЛОГРАФИЯ — метод получения объемного изображения объекта, основанный на интерференции волн. Некоторые высказывают гипотезу, что НЛО и энлонавты могут являтся чем-то вроде голографической проекции или особого эффекта, разработанного неизвестной организацией по неизвестным соображениям (это могут быть и ВЦ, экспериментирующие с поведением землян).<br><br><br>... смотреть

ГОЛОГРАФИЯ

Ударение в слове: гологр`афияУдарение падает на букву: аБезударные гласные в слове: гологр`афия

ГОЛОГРАФИЯ

-и, ж. Метод получения объемного изображения объекта, основанный на интерференции волн.[От греч. ‛όλος — весь, полный и γράφω — пишу]Синонимы: микро... смотреть

ГОЛОГРАФИЯ

Rzeczownik голография f holografia f

ГОЛОГРАФИЯ

гологра/фия, -и Синонимы: микроголография

ГОЛОГРАФИЯ

(греч. holos – весь, полный; grapho – пишу) – метод записи, воспроизведения и преобразования волновых полей, основанный на интерференции поля (Гибор, 1948). Голография позволяет получать объёмные изображения объектов... смотреть

ГОЛОГРАФИЯ

(1 ж), Р., Д., Пр. гологра/фииСинонимы: микроголография

ГОЛОГРАФИЯ

голография, гологр′афия, -и, ж. (спец.). Получение объёмного изображения, основанное на взаимном действии (наложении друг на друга) световых волн.прил.... смотреть

ГОЛОГРАФИЯ

ГОЛОГРАФИЯ. -и, ж. (спец.). Получение объёмного изображения, основанное на взаимном действии (наложении друг на друга) световых волн. || прилагательное голографический, -ая, -ое.... смотреть

ГОЛОГРАФИЯ

•голография•הוֹלוֹגרַפיָה נ'Синонимы: микроголография

ГОЛОГРАФИЯ

f.holographyСинонимы: микроголография

ГОЛОГРАФИЯ

сущ. жен. родафиз.голографія

ГОЛОГРАФИЯ

〔名词〕 全息术全息摄影全息学〔阴〕〈理〉全息(摄影)术. Синонимы: микроголография

ГОЛОГРАФИЯ

ж. holographie f

ГОЛОГРАФИЯ

гологра́фия, -иСинонимы: микроголография

ГОЛОГРАФИЯ

жholografiСинонимы: микроголография

ГОЛОГРАФИЯ

гологр'афия, -иСинонимы: микроголография

ГОЛОГРАФИЯ

ж.holographie fСинонимы: микроголография

ГОЛОГРАФИЯ

жHolographie fСинонимы: микроголография

ГОЛОГРАФИЯ

- см. Криминалистическая голография.Синонимы: микроголография

ГОЛОГРАФИЯ

holographyСинонимы: микроголография

ГОЛОГРАФИЯ

голографияСинонимы: микроголография

ГОЛОГРАФИЯ

голография ж Holographie f cСинонимы: микроголография

ГОЛОГРАФИЯ

Начальная форма - Голография, единственное число, женский род, именительный падеж, неодушевленное

ГОЛОГРАФИЯ

метод полного отображения информации об облике и структуре хозяйствующих субъектов.

ГОЛОГРАФИЯ

ж. спец. olografia Итальяно-русский словарь.2003. Синонимы: микроголография

ГОЛОГРАФИЯ

физ. гологра́фія Синонимы: микроголография

ГОЛОГРАФИЯ

галаграфія, -фіі- голография спектральная

ГОЛОГРАФИЯ

ж. holography

ГОЛОГРАФИЯ

голография гологр`афия, -и

ГОЛОГРАФИЯ

физ. галаграфія, жен.

ГОЛОГРАФИЯ

- изображение обнаженного тела

ГОЛОГРАФИЯ

ж. Holographie f.

ГОЛОГРАФИЯ

галаграфія, -фіі

ГОЛОГРАФИЯ

• holografie

ГОЛОГРАФИЯ

голография

ГОЛОГРАФИЯ

Галаграфія

T: 132