ЯДЕРНЫЙ КВАДРУПОЛЬНЫЙ РЕЗОНАНС

(ЯКР) - резонансное поглощение радиоволн атомными ядрами, уровни к-рых, вырожденные по спину, расщеплены вследствие взаимодействия электрич. квадрупольного момента ядра с градиентами электрич. внутрикристаллического поля. Т. н. чистый ЯКР наблюдается, в отличие от ядерного магн. резонанса (ЯМР), в отсутствие магн. поля. Взаимодействие квадрупольного момента ядра eQ снеоднородным кристаллич. полем E кр приводит к появлению уровней энергии ядра, соответствующих разл. ориентациям его спина I относительно оси симметрии oz кристаллич. поля [1 ].

Система уровней квадрупольного взаимодействия ядер определяется гамильтонианом:

5137-21.jpg

Здесь 5137-22.jpg -проекция спина ядра на ось oz, определяемая квантовым числом т;j хх, jyy, jzz - вторые производные потенциала j электрич. кристаллич. поля по координатам x; у, z, удовлетворяющие ур-нию Лапласа (jxx+jyy + jzz = = 0). Это позволяет характеризовать поле 2 переменными: градиентом вдоль oz eq=jzz и параметром асимметрии h = (jxx-jyy)/jzz. Для аксиально-симметричного поля энергия уровней определяется ф-лой

5137-23.jpg

Переходы между уровнями вызываются перем.магн. полем, перпендикулярным oz, с частотами, к-рые определяются значениями 5137-24.jpg и правилами отбора | Dm | = 1. Если поле не является аксиально-симметричным, спектры ЯКР имеют более сложный вид.

Применения ЯКР в исследовании кристаллов, в частности полупроводников, основаны на связи между структурой кристаллов и значениями градиентов кристаллич. поля. При этом структура кристалла определяет непосредственно резонансные частоты ЯКР (в отличие от ядерного магнитного резонанса). Значения j хх,jyy, jzz, характеризующие неоднородность электрич. поля, зависят от симметрии окружения. В случае кубич. симметрии окружения ядра квадрупольное взаимодействие отсутствует. В общем случае j хх,jyy, jzz определяются зарядами всех электронов и ядер, окружающих ядра, на к-рых наблюдается ЯКР. Т. к. вторые производные зависят от расстояния r как r-3, то осн. вклад вносят электроны атомов, содержащих исследуемые ядра. Т. о., величина квадрупольного взаимодействия, т. е. спектр ЯКР, зависит от распределения электронной плотности. Это позволяет изучать природу хим. связи в кристаллах.

Важную роль ЯКР играет при исследовании структурных фазовых переходов второго рода, когда при темп-ре перехода Т с возникает связанный с изменением параметра порядка дополнит. вклад в градиенты поля Е. Это приводит к изменению температурной зависимости частот ЯКР при Т= Т с и служит одним из наиб. точных методов определения Т с. Кроме того, исследование температурной зависимости частот ЯКР в окрестности Т= Т с позволяет определить температурную зависимость параметра порядка [1, 2].

Особую роль ЯКР играет при исследовании т. н. несоизмеримых фаз, где линии ЯКР обладают характерной формой со "всплесками" интенсивности поглощения, отражающей существование в кристалле неоднородного состояния [3]. "Всплески" интенсивности соответствуют вкладу тех ядер, к-рые находятся в области экстремумов поля смещений несоизмеримой волны при линейной зависимости частоты ЯКР от параметра порядка, а также экстремумам и нулевым значениям поля смещений несоизмеримой волны при квадратичной зависимости частоты ЯКР от параметра порядка. Характерная форма линии ЯКР позволяет идентифицировать несоизмеримые фазы в кристаллах и определять температурные границы их существования. Др. метод идентификации несоизмеримых фаз - исследование ядерной квадрупольной спин-решёточной релаксации. В области существования несоизмеримых фаз ядерная и квадрупольная спин-решёточная релаксация убыстряется. Импульсное возбуждение ЯКР и методы квадрупольного т. н. спинового эха позволяют расширить возможности изучения электрич. и магн. локальных полей в кристаллах, а также наблюдать сигналы и в неупорядоченных системах [4].

ЯКР является одним из осн. методов изучения внутр. движений в кристаллах, т. к. подвижность атомов влияет как на частоту и форму линий ЯКР, так и на время ядерной квадрупольной спин-решёточной релаксации.

Дефекты кристаллич. решётки приводят к уширению линий ЯКР и их сдвигу, а также к изменению времени ядерной квадрупольной релаксации. ЯКР используется и как чувствительный метод обнаружения радиационных дефектов. ЯКР может реализоваться также не только в результате поглощения радиочастотного эл.-магн. поля, но и при резонансном поглощении УЗ, к-рый модулирует ядерные квадрупольные взаимодействия. Исследования ядерного акустич. квадрупольного резонанса позволяют получать информацию о ядерном квадрупольном спин-решёточном взаимодействии [5].

Лит.:1) Гречишкин В. С., Ядерные квадрупольные взаимодействия в твердых телах, М., 1973; 2) Блинц Р., Жекш Б., Сегнетоэлектрики и антисегнетоэлектрики, пер. с англ., М., 1975; 3) Blinc R. [е. a.], NMR lineshape and phase solution effects in incommensurate Rb2ZnCl4, "J. Phys. C: Solid State Phys.", 1982, v. 15, № 1, p. 547; 4) Алексеева 3. М., [и др.], Комплексные исследования несоразмерных фаз в кристаллах прустита и пираргирита, "Изв. АН СССР, сер. физ.", 1987, т. 51, № 12, с. 2166; 5) Кессель А. Р., Ядерный акустический резонанс, М., 1969. В. С. Вихнин.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия..1988.



Физическая энциклопедия 

ЯДЕРНЫЙ МАГНЕТОН →← ЯДЕРНЫЕ ЦЕПНЫЕ РЕАКЦИИ

T: 0.124695837 M: 3 D: 3