ЭЛЕКТРОДИНАМИКА


классическая, теория (неквантовая) поведения электромагнитного поля, осуществляющего взаимодействие между электрич. зарядами (электромагнитное взаимодействие). Законы классич. макроскопич. Э. сформулированы в Максвелла уравнениях, к-рые позволяют определять значения хар-к эл.-магн. поля — напряжённости электрич. поля E и магн. индукции B — в вакууме и в макроскопич. телах в зависимости от распределения в пр-ве электрич. зарядов и токов. Вз-ствие неподвижных электрич. зарядов описывается ур-ниями электростатики, к-рые можно получить как следствие ур-ний Максвелла. Микроскопич. эл.-магн. поле, создаваемое отд. заряж. ч-цами, в классич. Э. определяется Лоренца — Максвелла уравнениями, к-рые лежат в основе классич. статистич. теории эл.-магн. процессов в макроскопич. телах; усреднение этих ур-ний приводит к ур-ниям Максвелла.
Среди всех известных видов вз-ствия электромагнитное занимает первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных (положительных и отрицательных) ч-ц, эл.-магн. вз-ствие между к-рыми, с одной стороны, на много порядков интенсивнее гравитационного и слабого, а с другой — явл. дальнодействующим в отличие от сильного вз-ствия. Эл.-магн. вз-ствием определяется строение ат. оболочек (см. АТОМ), сцепление атомов в молекулы (силы хим. связи) и образование конденсиров. в-ва (см. МЕЖАТОМНОЕ ВЗАИМОДЕЙСТВИЕ, МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ).Законы классич. Э. неприменимы при больших частотах и, соответственно, малых длинах электромагнитных волн, т. е. для процессов, протекающих на малых пространственно-временных интервалах. В этом случае справедливы законы квантовой электродинамики.

Историческая справка.

Простейшие электрич. и магн. явления были известны ещё в древние времена. Были найдены минералы, притягивающие кусочки железа, а также обнаружено, что янтарь (по-гречески — электрон), потёртый о шерсть (электризация трением), притягивает лёгкие предметы. Однако лишь в 1600 англ. учёный У. Гильберт впервые разграничил электрич. и магн. явления. Он открыл существование магн. полюсов и неотделимость их друг от друга, установил, что земной шар — гигантский магнит. В 17 — 1-й пол. 18 вв. проводились многочисл. опыты с наэлектризов. телами, были построены первые электростатич. машины, основанные на электризации трением, установлено существование электрич. зарядов двух родов (франц. физик Ш. Ф. Дюфе), обнаружена электропроводность металлов (англ. учёный С. Грей). С изобретением первого конденсатора — лейденской банки (1745) — появилась возможность накапливать большие электрич. заряды. В 1747—53 амер. учёный Б. Франклин изложил первую последоват. теорию электрич. явлений, окончательно установил электрич. природу молнии и изобрёл молниеотвод.
Во 2-й пол. 18 в. началось количеств. изучение электрич. явлений. Появились первые измерит. приборы — электроскопы разл. конструкций, электромеры. Англ. физик Г. Кавендиш (1773) и франц. физик Ш. Кулон (1785) экспериментально установили закон взаимодействия неподвижных точечных электрических зарядов (работы Кавендиша были опубликованы лишь в 1879). Этот осн. закон электростатики (Кулона закон) впервые позволил создать метод количеств. определения электрич. зарядов, основанный на измерении вз-ствия между ними. Кулон установил закон вз-ствия полюсов длинных магнитов и ввёл понятие магн. зарядов.
След. этап в развитии Э. связан с открытием в кон. 18 в. итал. учёным Л. Гальвани «животного электричества» и с работами его соотечественника А. Вольты, к-рый правильно истолковал опыты Гальвани присутствием в замкнутой цепи двух разнородных металлов и жидкости и изобрёл первый источник электрич. тока — гальванич. элемент (т. н. вольтов столб, 1800), с помощью к-рого стало возможным создавать электрический ток в течение длит. времени. В 1802 В. В. Петров, построив гальванич. элемент большой мощности, открыл электрич. дугу, исследовал её св-ва и указал на возможность её применения. В 1807 англ. учёный Г. Дэви, пропустив ток через водные р-ры щелочей, т. е. осуществив их электролиз, получил неизвестные ранее металлы — натрий и калий. В 1826 нем. физик Г. Ом определил количеств. зависимость электрич. тока от напряжения в цепи (Ома закон), а в 1830 нем. учёный К. Ф. Гаусс сформулировал осн. теорему электростатики (см. ГАУССА ТЕОРЕМА). Англ. физик Дж. П. Джоуль установил (1841), что кол-во теплоты, выделяемой в проводнике электрич. током, пропорц. квадрату силы тока; этот закон был обоснован (1842) точными экспериментами Э. X. Ленца (закон Джоуля — Ленца).
Наиболее фундам. открытие было сделано в 1820 дат. физиком X. Эрстедом; он обнаружил действие электрич. тока на магн. стрелку — явление, свидетельствующее о связи между электрич. и магн. явлениями. В том же году франц. физик А. М. Ампер установил закон вз-ствия электрич. токов (Ампера закон). Он показал также, что св-ва пост. магнитов могут быть объяснены, если предположить, что в молекулах намагнич. тел циркулируют пост. электрич. токи (мол. токи). Т. о., согласно Амперу, все магн. явления сводятся к вз-ствию токов, магн. же зарядов не существует. С открытиями Эрстеда и Ампера обычно связывают рождение Э. как науки.
В 30—40-х гг. в развитие Э. внёс большой вклад англ. учёный М. Фарадей - - творец общего учения об эл.-магн. явлениях, в к-ром все электрич. и магн. процессы рассматриваются с единой точки зрения. С помощью опытов он доказал, что действия электрич. зарядов и токов не зависит от способа их получения. В 1831 Фарадей открыл явление электромагнитной индукции — возбуждение электрич. тока в контуре, находящемся в перем. магн. поле. Это явление, наблюдавшееся также в 1832 амер. учёным Дж. Генри, положило начало бурному развитию электротехники. В 1833—34 Фарадей установил законы электролиза. В дальнейшем он пытался также доказать взаимосвязь электрич. и магн. явлений с оптическими и открыл поляризацию диэлектриков (1837), явления парамагнетизма и диамагнетизма (1845), магн. вращение плоскости поляризации света (Фарадея эффект, 1845) и др. Фарадей предположил, что наблюдаемое вз-ствие электрических зарядов и токов осуществляется через создаваемые ими в пр-ве электрич. и магн. поля, введя т. о. сами эти поля как реальные физ. объекты. Он исходил из концепции близкодействия, отрицая распространённую в то время концепцию дальнодействия, согласно к-рой тела действуют друг на друга через пустоту. При этом Фарадей ввёл также понятие о силовых линиях как механич. натяжениях в гипотетич. среде — эфире. Идеи Фарадея о реальности эл.-магн. поля не сразу получили признание. Первая матем. формулировка законов эл.-магн. индукции была дана нем. физиком Ф. Нейманом в 1845. Им же были введены важные понятия само- и взаимоиндукции токов. Значение этих понятий полностью раскрылось, когда англ. физик У. Томсон (лорд Кельвин) развил теорию электрич. колебаний в контуре, состоящем из конденсатора — электроёмкости — и катушки — индуктивности (1853).
Большое значение для развития Э. имело создание новых приборов и методов измерения, а также единая система электрич. и магн. единиц измерений, созданная Гауссом и нем. физиком В. Вебером (см. ГАУССА СИСТЕМА ЕДИНИЦ). В 1846 Вебер указал на связь силы тока с плотностью электрич. зарядов в проводнике и скоростью их упорядоч. перемещения. Он установил также закон вз-ствия движущихся точечных зарядов, который содержал новую универсальную электродинамич. постоянную, представляющую собой отношение электростатич. и эл.-магн. единиц заряда и имеющую размерность скорости. При эксперим. определении этой постоянной (Вебер и Ф. Кольрауш, Германия, 1856) было получено значение, близкое к скорости света; это явилось определ. указанием на связь эл.-магн. явлений с оптическими.
В 1861—73 Э. получила своё развитие и завершение в работах Дж. Максвелла. Опираясь на эмпирич. законы эл.-магн. явлений и введя гипотезу о порождении магн. поля перем. электрич. полем, Максвелл сформулировал фундам. ур-ния классич. Э., названные его именем. При этом он, подобно Фарадею, рассматривал эл.-магн. явления как нек-рую форму механич. процессов в эфире. Из ур-ний Максвелла вытекало важное следствие — существование эл.-магн. волн, распространяющихся со скоростью света. После экспериментов нем. физика Г. Герца (1886—89), обнаружившего существование эл.-магн. волн, теория Максвелла получила решающее подтверждение. Вслед за открытием Герца были предприняты попытки установить беспроволочную связь с помощью эл.-магн. волн, завершившиеся созданием радио (А. С. Попов, 1896). Ур-ния Максвелла легли в основу эл.-магн. теории света.
В кон. 19 — нач. 20 вв. начался новый этап в развитии Э. Исследования электрич. разрядов в газах увенчались открытием англ. физиком Дж. Дж. Томсоном дискретности электрич. зарядов. В 1897 Томсон измерил отношение заряда эл-на к его массе, а в 1898 определил абс. величину заряда эл-на. Голл. физик X. Лоренц, опираясь на открытие Томсона и молекулярно-кинетич. теорию, заложил основы электронной теории строения в-ва (см. ЛОРЕНЦА — МАКСВЕЛЛА УРАВНЕНИЯ). В классич. электронной теории в-во рассматривается как совокупность электрически заряженных ч-ц, движение к-рых подчинено законам классич. механики. Ур-ния Максвелла получаются из ур-ний электронной теории статистич. усреднением.
Попытки применения законов классич. Э. к исследованию эл.-магн. процессов в движущихся средах натолкнулись на существ. трудности. Стремясь разрешить их, А. Эйнштейн пришёл (1905) к относительности теории. Эта теория окончательно опровергла идею существования эфира, наделённого механич. св-вами. После создания теории относительности стало очевидным, что законы Э. не могут быть сведены к законам классич. механики. На малых пространственно-временных промежутках становятся существенными квант. св-ва эл.-магн. поля, не учитываемые классич. Э. Квант. теория эл.-магн. процессов — квантовая электродинамика — была создана во 2-й четв. 20 в.
С открытием новых фактов и созданием новых теорий значение классич. Э. не уменьшилось, были определены лишь границы её применимости. В этих пределах ур-ния Максвелла и классич. электронная теория сохраняют силу, являясь фундаментом большинства разделов электротехники, радиотехники, электроники и оптики (исключение составляет квантовая электроника). С помощью ур-ний Максвелла решаются мн. проблемы поведения плазмы в лаб. условиях и в космосе (см. ПЛАЗМА, УПРАВЛЯЕМЫЙ ТЕРМОЯДЕРНЫЙ СИНТЕЗ, ЗВЁЗДЫ) и мн. др. задачи теор. и прикладного хар-ра.

Физический энциклопедический словарь. — М.: Советская энциклопедия..1983.

ЭЛЕКТРОДИНАМИКА

к л а с с и ч е с к а я.

Классическая Э.- область физики, в к-рой изучаются классические (неквантовые) свойства эл.-магн. поля и движения электрич. и (гипотетич.) магн. зарядов, взаимодействующих друг с другом посредством этого поля. Одна из наиболее развитых областей физики, Э. представляется широким набором различных постановок задач и их характерных решений, приближённых методов и частных случаев, объединённых общими исходными законами и ур-ниями. Последние, составляя главную, центральную часть классической Э., подробно рассмотрены в Максвелла уравнениях. В настоящей статье излагаются лишь основные принципы Э., скелет её построения и периферийные отношения с др. областями физики, так или иначе граничащими с Э.

Исходные представления

Основы Э. заложены в 18-19 вв.: сначала в пределах электростатики, магнитостатики и токовой статики, а затем- после открытия явлений магн. действия электрич. токов X. Эрстедом (Н. Oersted, 1820) и эл.-магн. индукции М. фарадеем (М. Faraday, 1831) - на базе исследований эл.-магн. взаимодействий зарядов и токов. Ур-ния для взаимосвязанных электрич. и магн. полей, возбуждаемых источниками (зарядами и токами), найдены Дж. Максвеллом (J. Maxwell, 1864-73) и стали общепринятыми после обнаружения эл.-магн. волн Г. Герцем (Н. Hertz, 1888). В результате Э. слилась с оптикой. Формирование принципов Э. в осн. завершилось в нач. 20 в. Были открыты дискретные электрич. заряды - отрицательно заряженный электрон (Дж. Дж. Томсон, J. J. Thomson, 1897) и положительно заряженные ядра атомов (Э. Резерфорд, Е. Rutherford, 1903-11). На основе ур-ний Максвелла и ур-ний Ньютона с силой Лоренца развиты представления об электронном строении вещества и в ходе анализа Э. движущихся сред построена спец. теория относительности. Она естеств. образом (с позиций классич. Э.) объяснила релятивистские оптич. эффекты и отвергла необходимость существования эфира для распространения эл.-магн. волн.

В дальнейшем фундам. исследования в Э. переместились в квантовую релятивистскую область. В частности, только квантовая Э. объяснила устойчивость вещества, ибо по законам классич. Э. ускоренно движущиеся электроны в атомах должны были бы непрерывно растрачивать энергию на излучение и в конце концов упасть на ядра. Вместе с тем при учёте квантового характера движения нерелятивистских заряж. частиц, составляющих материальные тела, законы классич. Э., описывающие взаимодействие этих частиц посредством классич. полей, позволяют объяснить подавляющую часть происходящих вокруг нас явлений. Сюда относятся не только электрич., магн. и оптич. свойства твёрдых тел, жидкостей и газов, но и их др. макроскопич. характеристики (упругость, теплопроводность, поверхностное трение, вязкость и т. д.).

В Э. прежде всего рассматриваются свободные заряды и системы зарядов, удовлетворяющие приближению непрерывного энергетич. спектра. Классическому, неквантовому, описанию их эл.-магн. взаимодействия благоприятствует то, что оно, в отличие от слабого и сильного взаимодействий, является эффективным уже в низкоэнер-гетич. пределе, когда энергия взаимодействия частиц и фотонов мала по сравнению с энергией покоя электрона. В таких ситуациях, как правило, отсутствуют рождение и аннигиляция заряж. частиц, а имеет место лишь постепенное изменение состояния их движения в результате обмена большим кол-вом низкоэнергетич. фотонов. Однако и при высоких энергиях частиц в среде (в условиях их постоянного рождения и аннигиляции, напр. в электрон-позитронной плазме), несмотря на существ. роль флуктуации, Э. может быть с успехом использована для описания среднестатистич., макроскопич. характеристик процессов.

Исходными в Э. являются следующие понятия, вводимые на основе анализа физ. измерений: геометрия рассматриваемой области пространства-времени, включая условия на её границе и гравитац. фон (пустота); заряды частиц и токи, связанные с их движением (вещество); эл.-магн. поле; силы, испытываемые частицами; пространственно-временное перераспределение вещества и поля (взаимодействие).

Геометрия. Пространство-время, рассматриваемое общей теорией относительности (ОТО), четырёхмерно и может иметь сложную топологию, напр. благодаря чёрным дырам. Его локальная геометрия является геометрией Минковского и характеризуется метрич. тензором gab(xv), определяющим квадрат дифференциала расстояния ds2 =gabdxadxb. между бесконечно близкими точками х v и xv + dxv и являющимся ф-цией координат xv = (ct, r). Здесь t - время, r = (х i)- пространственный 3-вектор с декартовыми координатами х i(i= 1, 2, 3), греч. индексы a, b, v= 0, 1, 2, 3. В принципе, как показывает эффект Казимира, наличие к.-л. границ и сама форма рассматриваемой области пространства могут влиять на эл.-магн. проявления вакуума в ней.

В Э. метрика пространства-времени и пространственно-временные системы координат событий, т. е. свойства гра-витац. фона, обычно (для простоты) считаются не зависящими от эл.-магн. полей и движений заряж. вещества. Самосогласование Э. и ОТО, в принципе, осуществляется совместным решением связанных ур-ний Максвелла и ур-ний Эйнштейна, учитывающих кривизну пространства-времени и её изменение вследствие перераспределения энергии-импульса эл.-магн. поля и вещества. [Существуют многочисл. теоретич. попытки связать эл.-магн., слабое и сильное взаимодействия и само возникновение соответствующих зарядов частиц с топологич. и метрич. особенностями так или иначе расширенного пространства-времени, представляющегося многомерным, напр. 10- или 11-мерным, но обнаруживающего "лишние", "скрытые" измерения только для малых, напр. планковских, длин (~10-33 см) или для сверхвысоких энергий частиц (см. Великое объединение, Калуцы - Клейна теория, Единая теория поля).]

Относительность описания. Опираясь на релятивистскую ковариантность законов физики и идею близкодействия зарядов посредством поля (см. Взаимодействие), можно ограничиться формулировкой локальных, дифференц. ур-ний Э. в одной, удобнее всего - в к.-л. инерциальной (декартовой) системе координат ( системе отсчёта). В соответствии с эквивалентности принципом Эйнштейна описание физ. явлений представляется наиб. простым именно в локально инерциальной системе отсчёта, к-рая может быть реализована в окрестности любого события (точки пространства-времени), будучи связанной со свободно "падающим" телом отсчёта. Тогда локально тяготение не проявляется: метрич. тензор gab. сводится к диагональному hab с сигнатурой (+ - - -) (плоское Минковского пространство-время). Согласно относительности принципу, описание любых, в т. ч. эл.-магнитных, процессов не зависит (численно) от выбора различных инерциальных систем отсчёта, если в каждой из них начальные и граничные условия заданы одинаково (численно). Вместе с тем характеристики одного и того же процесса, конечно, выглядят по-разному из разл. систем отсчёта, поскольку ему отвечают в них различные начальные и граничные условия для полей и частиц.

Заряд и сила. Существенно, однако, что величина элек-трич. заряда тел (частиц) не зависит не только от выбора системы отсчёта (даже неинерциальной), но и от скорости движения тела (инвариантность заряда). Это положение исходит из следующего совместного определения элек-трич. заряда q, электрического Е и магнитного В полей, утверждающего в качестве основополагающего физ. закона (основанного на всей совокупности эксперим. данных Э.) ф-лу для силы Лоренца (в рамках идеализации точечного заряда, движущегося с определённой скоростью v):

ЭЛЕКТРОДИНАМИКА фото №1

или

ЭЛЕКТРОДИНАМИКА фото №2

Здесь p =gmu-- импульс заряж. тела с массой покоя m, фактор g= 1/ЭЛЕКТРОДИНАМИКА фото №3 , pa=mcua - ковариантный вектор энергии-импульса (4-импульс), ua=gabub,ubЭЛЕКТРОДИНАМИКА фото №4 дxbtЭЛЕКТРОДИНАМИКА фото №5(g с, gu)- контравариантная 4-скорость, ЭЛЕКТРОДИНАМИКА фото №6- собств. время тела, определяемое длиной его мировой линии xb(t), dt =gdt. (Здесь и далее используется Гаусса система единиц. )Инвариантность заряда экспериментально проверяется возможностью описать кинематику его движения в заданных полях в любых системах отсчёта и для любых нач. скоростей, используя, согласно (1), одну и ту же величину q (точнее, q/т), определяющую эффективность ускорения заряда. Сравнение зарядов тел qn, п=1,2, .... производится, напр., путём измерения отношения сил Fn = qnE, действующих на неподвижные заряды (в одном и том же поле Е). За единицу электрич. заряда принимается такой заряд, к-рый в вакууме под действием равного себе заряда на расстоянии r =1 см от него испытывает силу в 1 дин (согласно Кулона закону, величина силы взаимодействия двух неподвижных точечных зарядов равна q1q2/r2). Квантование заряда, т. е. его кратность величине заряда электрона е = 4,8•10-10 ед. СГС, или е/3(кварки), в Э. вводится как дополнит. наблюдат. факт. Так, экспериментально установлено, что величина заряда протона равна заряду электрона с относит. погрешностью <=10-21 .

Аналогичным образом, согласно (1) или (1'), с заменой скорости ЭЛЕКТРОДИНАМИКА фото №7, полей ЕЭЛЕКТРОДИНАМИКА фото №8 В и ВЭЛЕКТРОДИНАМИКА фото №9- Е, атакже скалярного заряда q на псевдоскаляр ЭЛЕКТРОДИНАМИКА фото №10 (для сохранения пространственных чётности Е и нечётности В), можно ввести дуальную силу Лоренца ЭЛЕКТРОДИНАМИКА фото №11 и определить точечный магн. заряд ЭЛЕКТРОДИНАМИКА фото №12. Здесь

ЭЛЕКТРОДИНАМИКА фото №13

есть дуальный (антисимметричный) псевдотензор эл.-магн. поля, eabmv- Леви-Чивиты символ. Используя идею калибровочной инвариантности, П. Дирак (P. Dirac) в 1931 показал, что элементарный магн. заряд ЭЛЕКТРОДИНАМИКА фото №14 должен быть тоже квантован и связан с соответствующим элементарным электрич. зарядом,ЭЛЕКТРОДИНАМИКА фото №15 /2 е, l=0, +1, +2,... (см. Магнитный монополь). Реальные магн. заряды в природе не обнаружены.

Поле. Ф-ла (1) одновременно даёт и определение клас-сич. эл.-магн. поля. С этой целью в каждой точке необходимо измерить ускорения, по крайней мере, трёх пробных частиц (с известными зарядами и массами), напр. одной первоначально покоившейся (для нахождения компонент вектора напряжённости электрич. поля Е )и двух движущихся в ортогональных направлениях (для нахождения компонент псевдовектора индукции магн. поля В). Согласно Лоренца преобразованиям, компоненты векторов сил и, следовательно, электрич. и магн. полей меняют свои значения при переходе из одной ("штрихованной") инерц. системы отсчёта в другую, относительно к-рой первая движется со скоростью и:

ЭЛЕКТРОДИНАМИКА фото №16

Здесь индексами || и | отмечены компоненты полей соответственно вдоль и поперёк вектора скорости u; g = = 1/ЭЛЕКТРОДИНАМИКА фото №17 . Т. о., разделение поля на электрическое и магнитное зависит от выбора системы отсчёта. Поэтому удобно использовать единый (антисимметричный) тензор эл.-магн. поля Fab (в 1'); тогда при преобразованиях Лоренца хa =Lab х'b закон трансформации полей (2) записывается в виде Fab= LmaLvbF'mv. Вместе с тем инвариантными остаются две, и только две (в вакууме), алгебраич. комбинации полей:

ЭЛЕКТРОДИНАМИКА фото №18

(см. Инварианты электромагнитного поля).

Динамика зарядов. Для заданных внеш. полей ф-ла (1) позволяет полностью описать движение любой системы зарядов. Однако задача значительно усложняется при учёте взаимодействия зарядов посредством создаваемого ими поля, к-рое имеет конечную скорость распространения и обладает собств. динамикой. В частности, взаимодействие любых двух произвольно движущихся зарядов не является центральным и не подчиняется третьему Ньютона закону механики, а энергия системы заряж. тел благодаря их эл.-магн. взаимодействию зависит от состояния поля и не равна сумме энергий каждого из тел в отдельности. Система заряж. тел подчиняется законам сохранения энергии, импульса и момента импульса только при учёте соответствующих величин, связанных с эл.-магн. полем (см. ниже).

Ток. В Э. для описания генерации поля точечными элек-трич. зарядами qn, движущимися по траекториям rn(t), используют понятия о плотности заряда r и плотности тока j:

ЭЛЕКТРОДИНАМИКА фото №19

где d-дельта-функция Дирака. Отвлекаясь от точечности зарядов при наличии большого их числа (приближение сплошной среды), вводят плотность rm = dqm/dV и плотность тока jm =rmdrm/dt сгустка зарядов dqm сорта т, движущихся в физ. бесконечно малом объёме dV по мировой линии xam(t) = (ct, rm(t)). Дальнейшее суммирование по всем скоростям drm/dt зарядов, проходящих через объём dV в окрестности точки r в момент времени t, приводит к полному 4-вектору плотности тока, характеризующему упорядоченное движение зарядов:

ЭЛЕКТРОДИНАМИКА фото №20

Он удовлетворяет ур-нию непрерывности ja,a = 0 (запятая с индексом a обозначает д/дхa), к-рое является локальным выражением заряда сохранения закона. Согласно послед-нему, полный заряд ЭЛЕКТРОДИНАМИКА фото №21 в к.-л. объёме V, ограниченном замкнутой поверхностью S, не меняется, если заряды не пересекают эту поверхность. [Аналогичные утверждения распространяются на магн. заряды и их 4-псевдовектор плотности тока ЭЛЕКТРОДИНАМИКА фото №22.]

Следует отметить, что излагаемая здесь последовательность согласования "правил" физ. измерения электродина-мич. величин и ур-ний Максвелла не является единственно возможной. Для Э. принципиальна лишь возможность такого согласования.

Особенности динамики поля с источниками

Согласно эксперим. данным, поток электрич. поля Е через S пропорционален суммарному заряду в объёме V:

ЭЛЕКТРОДИНАМИКА фото №23

Для неподвижных зарядов это утверждение следует из закона Кулона, но в Э. справедливо и при произвольном движении зарядов внутри поверхности S, несмотря на существование излучения. Тем самым устанавливается (и экспериментально подтверждается) фундам. свойство заряда Q, к-рое может служить новым способом его измерения, формально независимым от старого (1) и не апеллирующим к кинематике заряда.

Этот шаг однозначно определяет ур-ния Э. Действительно, формулировка (5) в дифференц. форме и требование её релятивистской ковариантности, т. е. выполнения при любой скорости движения инерциальной системы отсчёта с учётом преобразований координат, поля, плотностей заряда и тока, приводят к следствию

ЭЛЕКТРОДИНАМИКА фото №24

В результате магн. поле можно рассматривать как неизбежный релятивистский результат движения электрич. зарядов (тока j) и нестационарности создаваемого ими электрич. поля (тока смещения д E/дt).

Аналогичная аргументация по отношению к закону сохранения (в частности, отсутствия) магн. зарядов даёт закон эл.-магн. индукции:

ЭЛЕКТРОДИНАМИКА фото №25

С учётом ур-ний непрерывности ja,a= 0 и ЭЛЕКТРОДИНАМИКА фото №26=0 независимыми оказываются только правые ур-ния в (6) и (7). (Об их записи в интегр. форме, о граничных и нач. условиях, условиях излучения и о единственности решения см. Максвелла уравнения. )Полевые ур-ния (6), (7) совместно с ур-ниями движения всех зарядов под действием силы Лоренца лежат в основе Э. В релятивистски ковариантной форме ур-ния (6) и (7) имеют вид:

ЭЛЕКТРОДИНАМИКА фото №27

Т. о., электрич. и магн. 4-плотности тока являются локальными источниками полей. Поле, порождённое движущимися зарядами, согласно (8), распространяется в свободное от них пространство независимо от источников с одной и той же скоростью с (рис. 1). Она не зависит также от выбора инерциальной системы отсчёта ввиду явной ковариантности (8). Тем самым Э. предоставляет фактич. основу для второго постулата спец. теории относительности, требующего существования инвариантной скорости распространения сигналов.

ЭЛЕКТРОДИНАМИКА фото №28

Рис. 1. Силовые линии электрического поля Е заряда q, начавшего двигаться из точки о со скоростью u.

Источники. Вместе с тем скорость u движения зарядов как источников поля в ур-ниях Максвелла формально может быть любой, в частности превышающей скорость света в вакууме [О. Хевисайд (О. Heaviside), 1889; У. Том-сон (W. Thomson), 1901; А. Зоммерфельд (A. Sommerfeld), 1904]. Последняя возможность может быть обеспечена (даже если не иметь в виду гипотетич. тахионы )совокупным движением реальных зарядов под действием разл. "зайчиков", напр. плоских импульсов фотонов, электронов или др. частиц, наклонно падающих на плоский экран, либо под действием "ножниц", где роль "зайчика" играет точка пересечения образующих "ножницы" двух лезвий. В силу неравенства u>c создаваемое "зайчиком" пятно зарядов с плотностью r может отвечать сколь угодно большой плотности тока j = ru.

В подобных и др. случаях, когда движение определённых зарядов допустимо считать заранее известным, в правых частях ур-ний (8) или (6), (7) аддитивно выделяют т. н. сторонние источники ja ст= (cr ст, j ст) и ЭЛЕКТРОДИНАМИКА фото №29 -- заданные в пространстве-времени - 4-плотности тока, для к-рых ЭЛЕКТРОДИНАМИКА фото №30

Ограничения. Границы применимости Э. в зависимости от анализируемых реальных ситуаций и преследуемых целей могут определяться самыми различными причинами. Ниже указаны лишь наиболее типичные из них.

Важнейшим свойством ур-ний Максвелла является их линейность: поля, созданные двумя независимыми системами источников ja1ст,ЭЛЕКТРОДИНАМИКА фото №31и ja2cт,ЭЛЕКТРОДИНАМИКА фото №32, подчиняются суперпозиции принципу, т. е. сумма этих полей является решением ур-ний при совместном действии источников: ja ст=ja1ст+ja2ст, ЭЛЕКТРОДИНАМИКА фото №33. Нарушение принципа суперпозиции полей происходит за счёт нелинейного возбуждения новых токов ja, ЭЛЕКТРОДИНАМИКА фото №34, индуцируемых ja ст,ЭЛЕКТРОДИНАМИКА фото №35 при достаточно сильных полях в среде (либо в вакууме из-за квантовых эффектов рождения и уничтожения частиц, прежде всего электрон-позитронных пар, в полях |Fab|ЭЛЕКТРОДИНАМИКА фото №36 Е сЭЛЕКТРОДИНАМИКА фото №37 В с = т2 е с3/ЭЛЕКТРОДИНАМИКА фото №384,4.1013 Гс). Согласно квантовой электродинамике, вследствие рождения пар частица-античастица в достаточно сильных полях и при локализации заряж. частиц (массой т )в области с размерами порядка комптоновской длины волны ЭЛЕКТРОДИНАМИКА фото №39/g тс возникает ограничение и на их макс. плотность тока ЭЛЕКТРОДИНАМИКА фото №40 Здесь I А =g тс3/е- т . н. ток Аль-вена, отвечающий макс. концентрации ЭЛЕКТРОДИНАМИКА фото №41 частиц с зарядом е, движущихся прямолинейно друг за другом на расстоянии своего эл.-магн. классич. радиуса e2/gmc2=ЭЛЕКТРОДИНАМИКА фото №42. со скоростью u~c в трубке с поперечным размером ~ЭЛЕКТРОДИНАМИКА фото №43; g=1/ ЭЛЕКТРОДИНАМИКА фото №44 , a= е 2/ЭЛЕКТРОДИНАМИКА фото №45. Для электронов

IA/gЭЛЕКТРОДИНАМИКА фото №4617 кА.

В соответствии с неопределённостей соотношениями существуют также мин. среднеквадратичные значения полей, к-рые зависят от их частоты со и в свободном пространстве отвечают следующей спектр. плотности энергии нулевых колебаний эл.-магн. поля: [ Е2(w) + B2(w)]/8p~ЭЛЕКТРОДИНАМИКА фото №47(2/l)3, где l= 2p с/w. При измерении состояния полей E(ct, r), B(ct, r )как ф-ций r и t в области пространства L3 и времени Dt,aтакже при измерении их пространственно-временного среднего по этой области вследствие квантовых эффектов, обусловленных неустранимым обратным влиянием измерит. аппаратуры на поле, возникают абс. ограничения точности DE мин = D В мин = 2ЭЛЕКТРОДИНАМИКА фото №48 [Л. Квантовые неразрушающие измерения).

Симметрия. При локальных (точечных) преобразованиях координат и времени максимальную Ли группу симметрии, не меняющую вид ур-ний Максвелла с токами (8), составляют наряду с линейными 6-параметрич. преобразованиями Лоренца хaЭЛЕКТРОДИНАМИКА фото №49x'a =L'baxb не только очевидные 4-параметрич. преобразования сдвига хaЭЛЕКТРОДИНАМИКА фото №50 х'a = хa + аa (см. Пуанкаре группа )и 1-параметрич. масштабные преобразования xaЭЛЕКТРОДИНАМИКА фото №51 х'a = bхa, но и нелинейные 4-параметрич. конформные преобразования (Н. Bateman, E. Cuningham, 1909)

ЭЛЕКТРОДИНАМИКА фото №52

Сопровождающие (9) конформные преобразования полей Е, В и токов ja,ЭЛЕКТРОДИНАМИКА фото №53. являются линейными, но явно зависят от хa; они используются при построении нелинейных версий ур-ний Э. и нахождении их точных решений. Ур-ния Максвелла (8) не изменяются также при локальных внутренних, т. е. не затрагивающих пространственно-временные координаты, д у а л ь н ы х п р е о б р а з о в а н и я х:

ЭЛЕКТРОДИНАМИКА фото №54

Для свободных полей они известны как 1-параметрич. п р е о б р а з о в а н и я Л а р м о р а-Р а й н и ч а

ЭЛЕКТРОДИНАМИКА фото №55

и связаны с поляризац. вырождением эл.-магн. волн. Однако преобразования (10'), как и (9), не сохраняют вид ур-ний движения (1) электрич. (или магн.) зарядов.

Магнитный заряд. Явное согласование дуальной симметрии ур-ний Максвелла и ур-ний движения имеет место только в случае дуально заряженных частиц, несущих одновременно электрич. qn и магн. ЭЛЕКТРОДИНАМИКА фото №56 заряды. Последние преобразуются в соответствии с (10') по правилу

ЭЛЕКТРОДИНАМИКА фото №57

не изменяющему полную силу Лоренца, действующую на n -ю заряж. частицу:

ЭЛЕКТРОДИНАМИКА фото №58

Если отношение ЭЛЕКТРОДИНАМИКА фото №59 равно одной и той же (любой) величине для всех частиц, то дуальный поворот на угол ЭЛЕКТРОДИНАМИКА фото №60 приводит ур-ния Э. (8), (11) к обычной форме без магн. монополей (ЭЛЕКТРОДИНАМИКА фото №61=0) с наблюдаемыми эфф. электрич. зарядами частиц q'n=ЭЛЕКТРОДИНАМИКА фото №62и наблюдаемыми полями E', В' из (10) [Л. Пёйдж (L. Page), H. Адам (N. Adam), 1940]. Универсальность отношения ЭЛЕКТРОДИНАМИКА фото №63 для известных частиц экспериментально подтверждается с большой относит. точностью (напр., для электронов и протонов относит. погрешность не превышает ~10-26). Это обстоятельство, позволяя исключить дуально заряженные частицы и, в частности, "чистый" магн. монополь (для к-рого отношение ЭЛЕКТРОДИНАМИКА фото №64 по величине и по знаку должно быть обратно таковому для "чистого" электрич. заряда), скрывает дуальную симметрию однозарядовой Э. Тем не менее и в ней наиб. фундаментальными естественно считать те наблюдаемые, к-рые инвариантны относительно дуальных преобразований (а не сами электрич. и магн. поля), напр. дуально симметричную силу Лоренца (11), эфф. заряд q'n и компоненты Tmv тензора плотности энергии-импульса эл.-магн. поля (А. Зоммерфельд, 1928):

ЭЛЕКТРОДИНАМИКА фото №65

Даже в отсутствие "чистых" магн. монополей в Э. допустимы высшие магн. мультиполи, начиная с диполя, образованные магнитно нейтральной совокупностью монополей (ср. двухкварковую структуру мезонов и трёхквар-ковую структуру барионов). Однако эксперименты фактически исключают эту возможность, показывая, что все магн. мультиполи образованы электрич. токами. Так, в 1951 в экспериментах по рассеянию нейтронов в неоднородном магн. поле В= В (х) у0 (рис. 2) было показано

ЭЛЕКТРОДИНАМИКА фото №66

Рис. 2. Силы, действующие на "токовый" dm и "моно польный" ЭЛЕКТРОДИНАМИКА фото №67 магнитные диполи, ориентированные против оси х° и находящиеся в неоднородном магнит ном поле В=В(х)у°.

[К. Г. Шал (С. G. Shull) и др.], что их магн. дипольный момент dm имеет токовую [Ю. Швингер (J. Schwinger), 1937], а не монопольную [Ф. Блох (F. Bloch), 1936] природу: нейтроны движутся под действием силы F=ЭЛЕКТРОДИНАМИКА фото №68(dmB), характерной для рамки с электрич. током I=cdm/pr02. (радиуса r0), но не силы ЭЛЕКТРОДИНАМИКА фото №69 В, характерной для двух . разноимённых монополей bЭЛЕКТРОДИНАМИКА фото №70= +ЭЛЕКТРОДИНАМИКА фото №71 расположенных на расстоянии l. При ЭЛЕКТРОДИНАМИКА фото №72=dm различие указанных сил F-ЭЛЕКТРОДИНАМИКА фото №73.[dmrotB]обусловлено различным взаимодействием диполей со сторонними токами j=(c/4p)rot В, создающими неоднородное магн. поле В(r).

Электромагнитная асимметрия. Т. о., вещество устроено дуально несимметрично, из одних лишь электрич. зарядов. Впрочем, по крайней мере в макроскопич. Э., это не исключает ситуации, когда в неподвижной системе проводников отлична от нуля только плотность тока (и соответствующие магн. и тороидные мультипольные моменты), тогда как плотность электрич. заряда тождественно равна нулю. Создаваемое такой системой электрич. поле Е отлично от нуля, только если токи нестационарны. При движении относительно этой системы наряду с плотностью тока в ней будут наблюдаться плотность заряда и соответствующие электрич. мультипольные моменты; однако не существует системы отсчёта, из к-рой наблюдалась бы одна только плотность заряда и не наблюдалась бы плотность тока, а следовательно, всюду отсутствовало бы магн. поле.

В общем случае, согласно (7), ввиду отсутствия магн. зарядов и независимо от движения электрич. зарядов

ЭЛЕКТРОДИНАМИКА фото №74

т. е. магн. поле выступает как вспомогательное, характеризующее историю эволюции основного электрич. поля. Несмотря на это, введение самостоят. магн. поля необходимо, если последовательно придерживаться идеи близ-кодействия зарядов, т. е. описывать их взаимодействие только посредством локально (а не интегрально) измеримых полевых величин.

Экстремальные принципы. В отличие от дуально симметричной Э. (8), (11), в однозарядовой Э. не возникает проблем с получением совместной системы ур-ний (1), (8) ЭЛЕКТРОДИНАМИКА фото №75 для движения отд. электрич. зарядов qn и поля в вакууме из вариац. принципа (см. Вариационное исчисление). Для удобства вводятся новые полевые переменные - скалярный j( сt, r) и векторный A(ct, r) потенциалы электромагнитного поля:

ЭЛЕКТРОДИНАМИКА фото №76 (13)

Тогда второе ур-ние из (8), принимающее вид Fab,v + Fva,b+ +Fbv,a = 0, и, следовательно, ур-ния (7) с ЭЛЕКТРОДИНАМИКА фото №77 удовлетворяются тождественно. Первое же ур-ние из (8) и ур-ние (1') с учётом (4') [или ур-ния (6) и ур-ние (1) с учётом (4)] есть в точности Эйлера - Лагранжа уравнения с лагранжианом

ЭЛЕКТРОДИНАМИКА фото №78

При этом, правда, в последнем слагаемом необходимо исключить бесконечную энергию собственного (кулонов-ского) поля точечных зарядов, а в слагаемом взаимодействия Aaja/c- самовоздействие зарядов. Поскольку наблюдаемая масса заряж. частиц т n конечна, компенсацию их бесконечной эл.-магн. массы следует обеспечить введением бесконечной отрицат. массы неэлектромагн. происхождения ("перенормировка" массы). Эта непоследовательность, связанная с идеализацией точечных элементарных частиц, в релятивистской классич. физике, не включающей описание детальной внутр. структуры заряж. частиц, напр. как полевых образований, неизбежна в силу невозможности существования абсолютно недеформируемых протяжённых тел.

Калибровочная инвариантность. Если отказаться от то-чечности и учесть неэлектромагн. взаимодействие частиц, то, описывая частицы нек-рым классич. полем y, первое слагаемое в (14) следует заменить на более общий лагранжиан частиц ЭЛЕКТРОДИНАМИКА фото №79, зависящий от к.-л. многокомпонентных комплексных ф-ций yk(xa), k=1, 2, ... , и их производных yk,a. С учётом вещественности ЭЛЕКТРОДИНАМИКА фото №80 требование инвариантности полного лагранжиана относительно локальных фазовых преобразований

ЭЛЕКТРОДИНАМИКА фото №81

( калибровочные преобразования; ЭЛЕКТРОДИНАМИКА фото №82обнаруживает за-мечат. факт, известный как эвристич. принцип калибровочной инвариантности и перенесённый из Э. на всю теорию поля [Ч. Янг (Ch. Yang), P. Миллс (R. Mills), 1953; M. Гелл-Ман (М. Gell-Mann), 1956]. Согласно этому принципу, инвариантность исходного лагранжиана ЭЛЕКТРОДИНАМИКА фото №83 восстанавливается удлинением производных

ЭЛЕКТРОДИНАМИКА фото №84

за счёт введения компенсирующего поля Aa( хb), преобразующегося одновременно с (15) по т. н. калибровочному закону

ЭЛЕКТРОДИНАМИКА фото №85

не меняющему наблюдаемые компоненты поля (13) Fab. [В (15') величина заряда электрона е выступает как константа введённого таким образом взаимодействия - мин. эл.-магн. взаимодействия,- давая ещё одно неявное определение электрич. заряда.] Если для определённости ограничиться линейной зависимостью ЭЛЕКТРОДИНАМИКА фото №86 от производных yk,a, характерной для спинорных полей вещества, то в полном лагранжиане

ЭЛЕКТРОДИНАМИКА фото №87

непосредственно возникает необходимый лагранжиан взаимодействия ЭЛЕКТРОДИНАМИКА фото №88 вместе с новым определением 4-плотности тока ЭЛЕКТРОДИНАМИКА фото №89, не связанным с точечностью зарядов [ср. (4), (14)].

Собственный лагранжиан компенсирующего (здесь - эл.-магнитного) поля выбирается в простейшем виде ЭЛЕКТРОДИНАМИКА фото №90 [см. (3), (13)], обеспечивающем его инвариантность при калибровочном преобразовании (15 ") в отсутствие вещества. Этим, в частности, исключается слагаемое вида ЭЛЕКТРОДИНАМИКА фото №91 а следовательно, возможность ненулевой массы фотона ЭЛЕКТРОДИНАМИКА фото №92 Наличие ненулевой массы фотона кардинально меняло бы законы Э. на расстояниях ЭЛЕКТРОДИНАМИКА фото №93 [Л. де Бройль (L. de Broglie), 1924]; однако земные эксперименты, в частности по проверке закона Кулона и независимости скорости эл.-магн. волн в вакууме от их частоты, допускают такую возможность только на расстояниях ЭЛЕКТРОДИНАМИКА фото №941010 см, а наблюдения стабильных конфигураций газа и магн. полей галактик - на расстояниях ЭЛЕКТРОДИНАМИКА фото №951022 см. В принципе было бы возможно также несохранение электрич. заряда, напр. распад электрона на нейтральные частицы или осцилляции электрон позитрон, хотя подобные процессы и подавлены неизбежным участием большого кол-ва (ЭЛЕКТРОДИНАМИКА фото №961013 -1021) сверхмягких продольных фотонов (Я. Б. Зельдович, Л. Б. Окунь, М. Б. Волошин, 1978); однако лабораторные эксперименты и глобальные геоэлектрич. оценки показывают, что время жизни электрич. заряда превышает 1030 с.

Внутренние противоречия (неклассические проблемы)

Нелинейность. Включение в лагранжиан эл.-магн. поля неквадратичных по E и В слагаемых ведёт к нелинейной теории. Наиб. известное нелинейное обобщение Э. развито В. Гейзенбергом (W. Heisenberg), Г. Эйлером (Н. Euler), В. Вайскопфом (V. Weisskopf) (1936) и Ю. Швингером (1951) на основе квантово-электродинамич. вычисления поляризации электрон-позитронного вакуума, создаваемой достаточно плавными в пространстве-времени полями, для к-рых удаётся использовать точное решение Дирака уравнения. Соответствующий лагранжиан, для простоты выписываемый в естеств. единицах (ЭЛЕКТРОДИНАМИКА фото №97=с= 1),

ЭЛЕКТРОДИНАМИКА фото №98

описывает только эл.-магн. поле, причём плавно неоднородное, в пренебрежении производными от инвариантов (3). Он не претендует на самосогласованное "эл.-магн." описание источников поля - электронов и позитронов с зарядами + е и конечной классич. массой т е, как это предполагалось в нек-рых моделях, напр. М. Борном (М. Born) и Л. Инфельдом (L. Infeld) (1934), выбиравшими лагранжиан в виде

ЭЛЕКТРОДИНАМИКА фото №99

(впрочем, более реалистичном с точки зрения совр. струн теории; Е. С. Фрадкин, А. А. Цейтлин, 1985). Здесь E макс -нек-рое макс. поле. Мнимая часть (16) характеризует неустойчивость вакуума, точнее, вероятность рождения электрон-позитронных пар в единичном объёме за единицу времени, значительную при ЭЛЕКТРОДИНАМИКА фото №100 и убывающую по закону ехр(-p Е с )в полях Е<c. Вещественная часть (16) отвечает за собственную нелинейность "классич." электрон-позитронного вакуума-в отсутствие др. частиц и др. взаимодействий, к-рые, конечно, кардинально меняют ситуацию, скрадывая чисто эл.-магн. взаимодействие, начиная с расстояний ~10-13 см (сильное) и особенно ~ 10-16 см (электрослабое).

Если, несмотря на сказанное, обратиться, напр., к модификации закона Кулона, т. е. к сферич. симметрич. решению D = q/r2 соответствующих (16) электростатич. ур-ний Максвелла div D =0 (при rЭЛЕКТРОДИНАМИКА фото №1010), ЭЛЕКТРОДИНАМИКА фото №102 , с сингулярностью (точечным зарядом q )в начале координат r = 0, то обнаружится принципиальная роль нелинейности вакуума:

ЭЛЕКТРОДИНАМИКА фото №103

Здесь число ЭЛЕКТРОДИНАМИКА фото №104 учитывает все члены первого порядка по постоянной тонкой структуры ЭЛЕКТРОДИНАМИКА фото №105 Согласно (17), на больших расстояниях поле Е ослабляется по сравнению с g/r2: D/E >1, т. е. поляризов. вакуум экранирует "голый" заряд q. Однако на малых расстояниях эта экранировка уменьшается, и поляризация вакуума меняет знак при ЭЛЕКТРОДИНАМИКА фото №106 На меньших расстояниях возникает антиэкранировка, причём отношение D/E принимает мин. значение a/3pпри

ЭЛЕКТРОДИНАМИКА фото №107

когда ф-ция D(E )достигает максимума и обнаруживающаяся двузначность ф-ции Е(r )делает физически бессмысленным анализ области r<r мин. Хотя сама квантовая Э. как асимптотическая по a теория вряд ли верна на расстояниях r< мин, апри r~r мин указанное решение ввиду пространственной неоднородности заведомо выходит за квантово-электродинамич. рамки применимости лагранжиана (16), утверждение о том, что в нелинейной Э. (даже без учёта рождения реальных электрон-позитронных пар) должны существовать макс. электростатич. поле Е м и аналогичное макс. магнитостатич. поле В м = В с ехр (3p/a - 1), представляется неизбежным, поскольку остаётся справедливым и для пространственно однородного поля, напр. в плоском конденсаторе или в соленоиде [М. Гринман (М. Greenman), Ф. Рорлих (F. Rohrlich), 1973; Д. А. Киржниц, А. rЭЛЕКТРОДИНАМИКА фото №1080 кулоновскому полю е/r2, противоречивы, причём не только в Э., но и в квантовой Э. (Л. Д. Ландау, И. Я. По-меранчук, Е. С. Фрадкин, 1955). Наблюдаемая величина (и масса) заряда так или иначе должна определяться самосогласованными свойствами поляризов. вакуума с учётом неэлектромагн. взаимодействий, "размазывающих" точечный заряд.

Классический размер частиц. При этом в любой, в т. ч. квантовой, теории, отвлекающейся от неэлектромагн. структуры заряда, введение представлений о нелокальном взаимодействии поля с протяжённой заряж. частицей как единым целым наталкивается на значит. трудности, прежде всего причинного характера. В Э., пусть линейной (14), подобные попытки, несмотря на содержательность, также оказываются ограниченными. Среди них наиб. популярно представление о распределении заряда электрона по области размером ~r е = е 2 е с2ЭЛЕКТРОДИНАМИКА фото №1093.10-13 см ( классический радиус электрона), что соответствует приписыванию, хотя бы частичному, энергии покоя электрона т е с2. его кулоновскому полю. Это представление, конечно, предполагает наличие к.-л. неэлектромагн., упругих сил (т. н. н а т я ж ен и й П у а н к а р е), к-рые препятствуют кулоновскому расталкиванию "частей" электрона и обеспечивают релятивистскую ковариантность его полного 4-импульса, складывающегося из нековариантных 4-импульсов поля "электрич. начинки" и натяжений "упругого теста". Анализ устройства натяжений Пуанкаре выходит за рамки Э. не только из-за неизбежности квантового подхода, но даже потому, что внутри такого электрона они благодаря классич. эффектам гравитации, по-видимому, обусловливают наличие отрицат. плотности массы покоя [В. Боннор (W. Bonnor) и др., 1989].

Строго говоря, вследствие эффекта рождения электрон-позитронных пар применимость Э., по крайней мере без учёта сильных флуктуации заряда и эл.-магн. поля, проблематична уже на расстояниях меньше комптоновской длины волны электрона ЭЛЕКТРОДИНАМИКА фото №110 (П. Дирак, 1928). Вместе с тем эксперименты с электронами и мю-онами высоких энергий показывают, что при разл. взаимодействиях с др. частицами они ведут себя как точечные вплоть до расстояний ~10-16 см.

Реакция излучения (радиационное трение). Принимая тем не менее к.-л. распределение заряда, напр. равномерное внутри шара радиуса r е, на основе Э. можно ответить на важнейший вопрос о результате эл.-магн. воздействия разл. "частей" электрона друг на друга. Оказывается, несмотря на то, что эл.-магн. масса зависит от выбранного распределения, от него не зависит самовоздействие электрона, т. е. полная сила реакции излучения [X. Лоренц (Н. Lorentz), 1892; М. Абрагам (М. Abragam), 1904]

ЭЛЕКТРОДИНАМИКА фото №111

Она получается после перенормировки массы в первом порядке разложения по малому отношению r е к характерному масштабу неоднородности поля (или малому параметру запаздывания e2/mec3t). Независимость (18) от r е обеспечивает корректность учёта самовоздействия в пределе точечного заряда r еЭЛЕКТРОДИНАМИКА фото №1120. При этом обычно требуется условие малости силы ga по сравнению с силой Лоренца (1') со стороны внеш. поля. Оказывается, что последнее условие достаточно выполнить в системе отсчёта, где электрон покоится и сила реакции излучения на него равна g=(gi/c) =(2e2/3c3)d2u/dt2. Для гармонич. полей Е, В с частотой w оно даёт ограничения (условия внутр. непротиворечивости Э.)

ЭЛЕКТРОДИНАМИКА фото №113

к-рые в a-1 = 137 раз слабее, чем-приведённые выше квантово-электродинамич. ограничения. Второй закон Ньютона для изменения 4-импульса тсua точечного заряда, находящегося под действием "обычной" внешней силы (1') и "необычной" силы Лоренца-Абрагама (18), к-рая сама определяется кинематикой заряж. частицы, можно представить в более традиционной форме

ЭЛЕКТРОДИНАМИКА фото №114

если ввести понятие "эл.-магн." комплекса с эфф. 4-им-пульсом

ЭЛЕКТРОДИНАМИКА фото №115

[К. Тейтелбойм (С. Teitelboim), 1970]. Последний указывает на неразделимость заряда и его собственного ближнего поля (эл.-магн. шубы). Это "связанное" поле автоматически учитывается в локальном балансе 4-импульсов, следующем из приведённого второго закона Ньютона: приращение 4-импульса комплекса и создание 4-импульса "свободного" поля излучения происходят за счёт поглощения 4-импульса внешнего поля.

Непротиворечивое введение самовоздействия путём добавления силы (18) к силе Лоренца (I) для каждого точечного ускоренно движущегося заряда qn в рамках Э. предполагает дополнит, условие отсутствия ускорений в областях вне поля, E=B=0. в (1). Иначе в получающихся ур-ниях движения, содержащих теперь третьи производные координат частиц rn по времени, могли бы появиться неприемлемые решения, отвечающие неогранич. самоускорению заряда за счёт бесконечной энергии собственного поля. Разумеется, упомянутый выше "одетый" эл.-магн. комплекс вообще не испытывает самоускорения, поскольку в любой мгновенно сопутствующей системе отсчёта для перенормированного импульса ЭЛЕКТРОДИНАМИКА фото №116 справедливо ур-ние (1). Автоматич. отбор физически приемлемых решений ур-ний движения "голой" заряженной частицы, независимо от соотношения между силой реакции излучения и силой Лоренца, возможен также при их формулировке в эквивалентном интегральном виде, включающем начальные и конечные условия (Ф. Рорлих, 1961), Так, рассматривая (для простоты) нерелятивистский случай [Д. Д. Ива-ненко, А. А. Соколов, 1948; Р. Хааг (R. Haag), 1955], при конечном условии du/dt=0 (при ЭЛЕКТРОДИНАМИКА фото №117) имеем

ЭЛЕКТРОДИНАМИКА фото №118

Здесь налицо формальное нарушение причинности, поскольку ускорение выражается не через прошлое, а через будущее движение частицы, т. е. определяется полями, до к-рых частица ещё не дошла, на временном интервале ~ Т n. Однако для всех заряж. частиц (тел) времена Т n =2r п/3 с<= Т е=2 е2/(3 т е с3)ЭЛЕКТРОДИНАМИКА фото №1196.10-24 с и, следовательно, все соответствующие проблемы непричинности и нелокальности эл.-магн. взаимодействия оказываются за пределами применимости Э. А именно, принципиальным становится учёт квантовых флуктуации движения электрона (или любой заряж. частицы), для к-рых характерный временной, ЭЛЕКТРОДИНАМИКА фото №120, и пространственный, ЭЛЕКТРОДИНАМИКА фото №121 масштабы в ЭЛЕКТРОДИНАМИКА фото №122 раз больше соответственно временного, Т е, и пространственного, сТ е, масштабов самоускоряющихся решений. Эти проблемы корректно разрешаются при кван-тово-электродинамич. анализе самовоздействия [Е. Мо-ниц, Д. Шарп (Е. Moniz, D. Sharp), 1977; В. К. Кривицкий, В. Н. Цытович, 1991 ]. Оказывается, что при достаточно длительном действии сила реакции излучения действительно проявляется на классич. уровне, напр., она обусловливает спиральное (скручивающееся) движение электронов в однородном магн. поле, отличающееся от винтового движения с постоянным радиусом благодаря трению о собственное синхротронное излучение.

Запаздывание. Причинности принцип играет в Э. важнейшую роль, поскольку, согласно условиям излучения (при постановке нач. задачи в ограниченной области пространства), он требует ограничиться только запаздывающими решениями ур-ний Максвелла, нарушая их обратимость во времени (при замене jЭЛЕКТРОДИНАМИКА фото №123 -j,rЭЛЕКТРОДИНАМИКА фото №124r, ВЭЛЕКТРОДИНАМИКА фото №125- В, Е-> Е Если для определённости выбрать условие калибровки Лоренца Aa,a= 0, то вынужденное решение соответствующего (8) волнового ур-ния Аa,b,b = 4pja/ с для системы точечных зарядов можно записать в виде

ЭЛЕКТРОДИНАМИКА фото №126

( Льенара - Вихерта потенциалы). Здесь интегрирование ведётся по собств. времени т„ каждой из заряж. частиц и использована запаздывающая Грина функция G(хm )отличная от нуля только в световом конусе будущего ( х0>0) и равная там 2d (- хm хm )(для свободного пространства). Из решения (19) вытекают, по существу, все результаты Э. об излучении и взаимодействии зарядов; для пространственно ограниченных задач в нём необходимо лишь соответствующим образом изменить ф-цию Грина.

Дальнодействие. Можно совсем не вводить распределённое в пространстве поле, а подставить его явные значения в точках нахождения зарядов в ур-ния их движения. Тогда Э. примет вид теории прямого межчастичного взаимодействия с ф-цией Лагранжа, зависящей только от координат и скоростей зарядов [X. Тетроде (Н. Tetrode), 1922; А. Фок-кер (A. Fokker), 1929]. Для такой переформулировки Э. в решении (19) удобнее использовать непричинную ф-цию Грина, всюду определяемую полуразностью запаздывающего и опережающего потенциалов:

ЭЛЕКТРОДИНАМИКА фото №127

(для свободного пространства). В полевой трактовке этим учитывалось бы "свободное" поле излучения и снималась бы проблема самовоздействия и перенормировки массы в пределе точечных зарядов (П. Дирак, 1938). Вместе с тем добавлением к получающейся ф-ции Лагранжа полных производных по времени удаётся придать новой теории явно причинную форму, причём симметричную по перестановкам частиц [Р. Муре (R. Moore), Т. Скотт (Т. Scott), М. Монахан (М. Monahan), 1988]. В частности, для заряда qk, взаимодействующего со всеми остальными зарядами Вселенной, ф-ция Лагранжа принимает вид:

ЭЛЕКТРОДИНАМИКА фото №128

Поправка на силу реакции излучения (в нерелятивистском случае)

ЭЛЕКТРОДИНАМИКА фото №129

к запаздывающей силе Лоренца, ЭЛЕКТРОДИНАМИКА фото №130обусловлена одними и теми же (остальными, пЭЛЕКТРОДИНАМИКА фото №131k )зарядами Вселенной и возникает в уравнении движения ЭЛЕКТРОДИНАМИКА фото №132 естеств. образом из требования самосогласованности движения всех заряж. частиц при условии квазинейтральности Вселенной и отсутствия элек-трич. поляризации при усреднении по всем рассматриваемым зарядам, ЭЛЕКТРОДИНАМИКА фото №133Здесь проблема самоускорения

заряда не возникает, поскольку отсутствует внутренний бесконечный источник энергии (собственное кулоновское поле), и без силы Лоренца невозможно появление "силы реакции излучения", автоматически низведённой на роль поправки.

Что касается свойств необратимости во времени и выделения обычных запаздывающих решений, то они связываются со свойствами эволюционирующей материи и всей Вселенной и ввиду наличия неэлектромагн. сил выходят за рамки Э., требуя включения дополнит. физ. постулатов [Дж. Уилер (J. Wheeler), P. Фейнман (R. Feynman), 1945; Д. Пегг (D. Pegg), 1975]. В целом исследования Э. как теории прямого межчастичного взаимодействия направлены на то, чтобы преодолеть внутр. противоречия полевой Э., связанные с точечностью зарядов, перенормировкой их массы, нарушением причинности при самовоздействии, ограничением макс. потенциалов и мин. расстояний взаимодействия зарядов и пр. Однако, поскольку эти противоречия затрагивают лишь область квантовых явлений, применение в области классич. физики переформулированной, неполевой Э. оказывается несколько искусственным и непопулярным, особенно вследствие её усложнённости. Последнее гл. обр. обусловлено необходимостью выделения запаздывающих координат частиц, накладывающего сложные условия связи на вариац. ур-ния теории.

Законы сохранения и ненаблюдаемость потенциалов

В полевой формулировке Э. этих сложностей нет, и в анализе взаимодействия зарядов на первый план выступает динамика самого создаваемого ими поля. Существенно, что благодаря калибровочной инвариантности в Э. нельзя непосредственно наблюдать потенциалы Аa этого поля. Такая возможность имеется только в квантовой физике и обнаруживается, напр., в интерференц. эффектах вследствие изменения фазы волновых ф-ций заряж. частиц под действием потенциалов Аa( хb) даже в тех пространственно-временных областях, где в силу особенностей топологии отсутствуют напряжённости поля, Fab = 0 (см. Ааронова - Бома эффект). Наблюдение потенциалов j, А было бы возможно в калибровочно неинвариантной Э. с ненулевой массой фотона, где при условии калибровки Лоренца волновое ур-ние для них имеет вид Прока уравнения Аa,b,b -ЭЛЕКТРОДИНАМИКА фото №134=4pja/c ссохраняющимся 4-током (ja,a = 0), первое и второе ур-ния Максвелла (6) содержат в правых частях слагаемые соответственно ЭЛЕКТРОДИНАМИКА фото №135 и ЭЛЕКТРОДИНАМИКА фото №136, а плотности энергии эл.-магн. поля и её потока (Пойнтинга вектор )равны:

ЭЛЕКТРОДИНАМИКА фото №137

Несмотря на ненаблюдаемость при m ф = 0, потенциалы часто используются для описания различных (калибровочно инвариантных и неинвариантных) характеристик эл.-магн. поля.

Момент импульса, спин и "масса" поля. Важные примеры первых и последних - тензоры плотности импульсного, Mvab = ( хaT vb -xbTva)/ с [см. (12)], и спинового, Svab=(AaFvb-AbFva)/4p с, моментов, определения к-рых диктуются Нётер теоремой. Им соответствуют векторы плотности момента импульса (А. И. Садовский, 1897) и спина [Ч. Г. Дарвин (Ch. G. Darwin), 1932]:

ЭЛЕКТРОДИНАМИКА фото №138

Первый лишь неявно зависит от поляризации поля, а второй непосредственно связан с ней. Их разность m-ЭЛЕКТРОДИНАМИКА фото №139, обычно заменяемая на вектор l=[r([E][ЭЛЕКТРОДИНАМИКА фото №140 А]+( ЕЭЛЕКТРОДИНАМИКА фото №141) А)]/4p с, характеризует "орбитальную" часть момента импульса, к-рая, как и спиновая, зависит от калибровки. Для свободного поля здесь удобна кулоновская калибровка div A=0, позволяющая считать j=0. Тогда, поскольку Tva,v = 0 и Fva,v=0, для любой замкнутой конфигурации поля излучения, наряду с 4-импульсом Рa=(W,- Р )и полным моментом импульса М, сохраняются во времени также спин ЭЛЕКТРОДИНАМИКА фото №142 и "орбитальный" момент импульса L = М-ЭЛЕКТРОДИНАМИКА фото №143. Эти величины определяются пространственными интегралами соответственно от T0a = (w, - S/c),m,ЭЛЕКТРОДИНАМИКА фото №144 и l по всей области ЭЛЕКТРОДИНАМИКА фото №145 , занятой полем. Ковариантность сохраняющегося 4-вектора энергии-импульса поля Рa позволяет говорить о скорости центра "масс" поля и i = сР i0, где Р0=W/c. Его "массу" (покоя) m0, в общем случае переменную во времени, можно ввести ф-лой

ЭЛЕКТРОДИНАМИКА фото №146

Последнее тождество в соответствии с (3) показывает релятивистскую инвариантность данного определения, причём в качестве квадрата плотности "массы" под знаком интеграла стоит квадрат L2 любого из четырёх собств. значений (совпадающих по величине) тензора плотности энергии-импульса поля, Tvaaak =Lk а vk. Т. о., даже при нулевой массе фотона, m ф = 0, поле излучения может обладать "массой", m0ЭЛЕКТРОДИНАМИКА фото №1470, наличие к-рой отвечает (частичной) локализации эл.-магн. энергии благодаря (частичной) параллельности векторов Е и В либо благодаря (частичному) уничтожению потока энергии при усреднении вектора Пойнтинга с [ ЕВ]/4p из-за переменности его направления в пространстве, напр. для стоячей волны.

Законы сохранения. Если с полем взаимодействует ограниченная система заряж. частиц (тел), то во времени будут сохраняться их совместные энергия-импульс и момент импульса (см. Мультиполъное излучение). Поскольку описание частиц полевым образом через y-функции выходит за рамки Э. точечных зарядов, то в ней не используется и возможность равноправного с орбитальным моментом введения спина заряж. частиц [Ф. Белинфанте (F. Belinfante), 1939], а также соответствующего магн. момента как циркулирующего течения заряда в поле y-волны [В. Гордон (W. Gordon), 1928]. Более того, утрируя ситуацию, согласно ур-нию Дирака, в Э. элементарный заряд, скажем, электрона, нельзя рассматривать иначе как точечный квант заряда е, непредсказуемо движущийся со скоростью света с (нем. Zitterbewegung - дрожание) внутри комптоновского объёма ЭЛЕКТРОДИНАМИКА фото №148 так, что ср. поступат. скорость электрона совпадает с его классич. скоростью u. Аналогично в итоге усреднения возникают его спин ЭЛЕКТРОДИНАМИКА фото №149/2, равный произведению ср. радиуса ЭЛЕКТРОДИНАМИКА фото №150/2 на импульс т е с, и магн. дипольный момент еЭЛЕКТРОДИНАМИКА фото №151/(2 т е с), равный произведению ср. тока ЭЛЕКТРОДИНАМИКА фото №152 на площадь ЭЛЕКТРОДИНАМИКА фото №153 и фактор с-1 [К. Хуанг (К. Huang), 1952]. Отвлекаясь от подобных наглядных представлений, в совр. версиях Э. точечные заряж. частицы просто наделяют определёнными магнито- и электроди-польными (и высшими мультипольными) моментами и так или иначе постулируют законы их взаимодействия с эл.-магн. полем.

Игнорируя указанные мультипольные эффекты, к-рые для элементарных зарядов обычно малы по сравнению с исходными монопольными эффектами, и вводя для сиc-темы точечных зарядов тензоры

ЭЛЕКТРОДИНАМИКА фото №154

можно прийти к ур-ниям непрерывности

ЭЛЕКТРОДИНАМИКА фото №155

суммарных тензоров плотности энергии-импульса и момента импульса. Отсюда после интегрирования T0b +t0b и mi + (l/2)eijlmjl0; по всей области ЭЛЕКТРОДИНАМИКА фото №156, занятой полем и частицами, следуют законы сохранения их полных 4-импульса Pa + P0a и момента импульса М+М0. Механич. взаимодействие зарядов с полем описывается 3-плотностью 4-силы Лоренца:

ЭЛЕКТРОДИНАМИКА фото №157

При переходе к непрерывному распределению заряда в среде рассматривают сгусток зарядов dqn, движущихся в физ. бесконечно малом объёме dV по мировой линии xan(t) = (ct, rn(t)), и вводят плотность силы Лоренца fn =rnE+c-1.[jn В]. Изменение механич. энергии зарядов

ЭЛЕКТРОДИНАМИКА фото №158,

находящихся внутри к.-л. области V(t), совершается работой только электрич. поля: ЭЛЕКТРОДИНАМИКА фото №159. Она определяется распределением полной плотности тока ЭЛЕКТРОДИНАМИКА фото №160 по элементам объёма dV, но из теоремы Пойнтинга jE=-dw/dt - divS может быть выражена через изменение энергии эл.-магн. поля W внутри объёма V(t) и её поток через границу S (t) этого объёма, элементы к-рой da имеют локальную скорость u':

ЭЛЕКТРОДИНАМИКА фото №161

Классическая электродинамика в искривлённом пространстве-времени

До сих пор речь шла о плоском пространстве-времени (и декартовых координатах в нём). Будучи искривлённым, оно изменяет характер взаимодействия между эл.-магн. полем и заряж. частицами; такова ситуация, напр., в окрестностях вращающихся нейтронных звёзд и чёрных дыр. Нарушаются также законы Э. о сохранении полных 4-импульса Рa + Р0a и момента импульса М+ М0. благодаря их передаче гравитац. полю. В частности, возможны прямая трансформация эл.-магн. волн в гравитационные и непосредств. гравитац. излучение заряж. частиц, движущихся под действием эл.-магн. поля, напр., в плазме. Считая гравитац. фон gab(ct, r )внешним, заданным независимо от перераспределения энергии-импульса эл.-магн. поля и зарядов, законы Э. как системы дифференц. ур-ний первого порядка можно однозначно установить из принципа общей ковариантности. Согласно этому принципу, в искривлённом пространстве-времени (или в любых криволинейных координатах) следует заменить частную производную (запятую) любого тензора, напр. Tab,v в (20), на ковари-антную производную (точку с запятой) ЭЛЕКТРОДИНАМИКА фото №162ЭЛЕКТРОДИНАМИКА фото №163 , добавляя на каждый контравариантный индекс а член +ЭЛЕКТРОДИНАМИКА фото №164 , а на каждый ковариантный индекс Р член ЭЛЕКТРОДИНАМИКА фото №165, где ЭЛЕКТРОДИНАМИКА фото №166-Кристоффеля символы.

В результате ур-ния Э. (Г), (8) (без магн. зарядов) суть

ЭЛЕКТРОДИНАМИКА фото №167

(g = det gab), причём последнее ур-ние не меняет свой вид и удовлетворяется введением прежних потенциалов (13). Вектор 4-тока

ЭЛЕКТРОДИНАМИКА фото №168

или для непрерывного распределения зарядов ЭЛЕКТРОДИНАМИКА фото №169 где ЭЛЕКТРОДИНАМИКА фото №170 [в окрестности мировой линии х n(t)], а плотность зарядов ЭЛЕКТРОДИНАМИКА фото №171. Ур-ние непрерывности Tvb;v=-fb для плотности энергии-импульса эл.-магн. поля (12) (и аналогично - зарядов) принимает вид

ЭЛЕКТРОДИНАМИКА фото №172

и содержит, наряду с силой Лоренца fb [ср. (21)], силу тяготения. Последняя имеется также в ур-нии движения зарядов (1 "), куда, кроме того, нужно в качестве поправки ввести силу реакции излучения. Она включает дополнительные к (18) слагаемые, связанные с ускоренным движением заряда в гравитац. поле, в т. ч. создаваемом 4-им-пульсом эл.-магн. поля - внешнего и собственного.

Поле тяжести как среда. Электрическое Е и магнитное В поля, определяемые компонентами ЭЛЕКТРОДИНАМИКА фото №173 , по-прежнему находятся, согласно (1 "), непосредственными измерениями ускорений пробных заряж. частиц, движущихся с определённой скоростью uan в локально инерциальной (свободно падающей) системе отсчёта, где Г adv = 0 (см.

Геодезическая линия). Для записи ур-ний поля (8 ") в 3-мерной форме удобно ввести вектор Gi= -g0i/g00, 3-мерный метрич. тензор ЭЛЕКТРОДИНАМИКА фото №174 , его определитель Г = det gil и новые, отличные от Ei = F0i и В i = =ЭЛЕКТРОДИНАМИКА фото №175, поля

ЭЛЕКТРОДИНАМИКА фото №176

Тогда ур-ния Максвелла в гравитац. поле для произвольных локальных координат r и локального времени t принимают вид

ЭЛЕКТРОДИНАМИКА фото №177

формально аналогичный ур-ниям в среде. В частности, статич. гравитац. поле играет роль среды с электрич. и магн. проницаемостями ЭЛЕКТРОДИНАМИКА фото №178 , причём в слабом поле тяжести всё определяется скалярным гравитац. потенциалом j г, поскольку 1-g00ЭЛЕКТРОДИНАМИКА фото №1792j г/ с2. Другие, иногда более удобные, формы ур-ниям (8 ") можно придать, производя "3 +1"-расщепление пространства-времени и переходя к "абсолютному" пространству и единому "глобальному" времени, но используя для измерения физ. величин Fab и ja систему отсчёта к.-л. локальных наблюдателей, напр. локально невращающихся [К. Торн (К. Thorne), Д. Макдональд (D. Macdonald), 1982]. Обобщая конформные преобразования (9), сохраняющие ур-ния светового конуса хa хa =0, можно утверждать, что ур-ния Максвелла (6 ") - (8 ") ковариантны по отношению к общему растяжению всех длин согласно замене:

ЭЛЕКТРОДИНАМИКА фото №180

где ЭЛЕКТРОДИНАМИКА фото №181 -произвольная ф-ция координат.

Оптика и термодинамика излучения в гравитац. поле.

В отсутствие источников ур-ния (6 ") - (8 ") имеют наиб. простое решение для полей, длина волны к-рых мала по сравнению с характерным радиусом кривизны пространства-времени и масштабом изменения амплитуды, поляризации и длины волны этих полей. В таком приближении справедливы законы геом. оптики: световые лучи являются нулевыми геодезическими, удовлетворяющими ур-ниям gabdxadxb =0; вектор поляризации поля перпендикулярен лучам и переносится параллельно вдоль них; амплитуда поля определяется законом сохранения эл.-магн. энергии в соответствии с адиабатич. постоянным числом фотонов в каждой лучевой трубке. В результате свет и радиоволны, напр. от звёзд или квазаров, проходя вблизи массивных тел, напр. галактик или чёрных дыр, испытывают угл. отклонение (рефракцию) и временное запаздывание. Эти эффекты, независимые от поляризации, впервые наблюдались в поле тяжести Солнца соответственно путём оптич. наблюдений затменных звёзд в 1919 [А. Эддингтон (A. Eddington)] и путём радиолокации Меркурия в 1968 И. Шапиро (I. Shapiro); в 1979-80 Д. Уолш (D. Walsh), Р. Вейман (R. Weymann) и др. обнаружили также двойные изображения квазаров, обусловленные эффектом гравитац. линзы (см. Гравитационная фокусировка). Кроме того, имеется изменение локально измеряемых поляризации и длины волны l излучения. Последнее в статич. поле тяжести подчиняется закону ЭЛЕКТРОДИНАМИКА фото №182 и в земных условиях впервые измерено в 1960 для у-лучей с использованием Мёссбауэра эффекта[Р. Паунд (R. Pound), Дж. Ребка младший (G. Rebka Jr.)]. Вследствие расширения Вселенной существует ещё космологич. красное смещение, благодаря к-рому сдвигаются наблюдаемые спектры далёких галактик и квазаров и происходит остывание реликтового излучения.

В общем случае в соответствии с принципами термодинамики хаотич. эл.-магн. поле в вакууме, находящееся в тепловом равновесии с окружающими телами, обладающими определённой темп-рой Т, или изолированное после такого равновесного контакта, полностью характеризуется этой темп-рой и занимаемым им объёмом. Спектральная интенсивность такого равновесного, черно-тельного излучения подчиняется Планка закону излучения и в отсутствие поля тяжести не зависит от координат. В искривлённом пространстве-времени его интенсивность изменяется, становится неоднородной. Более того, как показал В. Унру [(W. Unruh), 1976], рассматривая для простоты однородное поле тяжести (или, что эквивалентно, равномерно ускоренную систему отсчёта, движущуюся с ускорением а относительно инерциальной системы), наинизшее энергетич. состояние (нулевые колебания) эл.-магн. поля там обладает ненулевой темп-рой Т а=ЭЛЕКТРОДИНАМИКА фото №183a/(2pck )(в земном поле тяжести Т аЭЛЕКТРОДИНАМИКА фото №1844.10-20 К). Такую же мин. темп-ру Т а приобретает любое пробное тело, приведённое в тепловой контакт с излучением вакуума. С указанными тепловыми свойствами вакуума в ускоренной системе отсчёта связан, напр., известный эффект деполяризации электронного пучка в магн. поле накопительного кольца [Дж. Белл (J. Bell), Дж. Лейнаас (J. Leinaas), 1983 ], описанный ранее А. А. Соколовым и И. М. Терновым (1963) в инерциальной системе отсчёта. При испарении чёрной дыры с массой M0 и поверхностной "напряжённостью" гравитационного поля a0 = GM0/r чд = c4/4GM0. соответствующая чернотельная темп-pa, измеряемая наблюдателем на бесконечности, T чд=ЭЛЕКТРОДИНАМИКА фото №185c3/(8pGkM0 )и по Вина закону смещения отвечает характерной длине волны l порядка гравитационного радиуса r чд = 20/ с2 [С. Хокинг (S. Hawking), 1974]. Квантовые свойства эл.-магн. излучения в его собств. гравитац. поле ставят также абс. предел и максимально достижимой темп-ры T* = m*c2/k~1032 К, отвечающей характерной длине волны l*~L*=ЭЛЕКТРОДИНАМИКА фото №186/т*с, ЭЛЕКТРОДИНАМИКА фото №187где -планковская масса (А. Д. Сахаров, 1966).

Электрон-позитронный вакуум. В классич. гравитац. поле, как и во внеш. эл.-магн. поле, эл.-магн. взаимодействие меняется также вследствие неустранимой поляризации электрон-позитронных пар физ. вакуума. Последняя возникает за счёт приливного эффекта, т. . Это явление, квантовое в своей основе, видоизменяет ур-ния Э. (6 ")-(8 "). Для перем. гравитац. полей с характерной частотой ЭЛЕКТРОДИНАМИКА фото №188 и масштабом ЭЛЕКТРОДИНАМИКА фото №189оно может приводить к эфф. рождению пар реальных зарядов (электронов и позитронов) и поглощению эл.-магн. волн, напр. в ранней Вселенной или в окрестности чёрных мини-дыр. Для более плавных в пространстве-времени гравитац. полей с характерным масштабом ЭЛЕКТРОДИНАМИКА фото №190 поляризация пар в осн. является виртуальной, но она вполне классич. образом влияет на эл.-магн. волны [И. Драммонд (1. Drumraond), С. Хатрел (S. Hathrell), 1980]. Именно, при неизменном втором ур-нии в (8 ") первое ур-ние приобретает дополнит. слагаемые, пропорциональные производным от разл. произведений нормированного тензора кривизны ЭЛЕКТРОДИНАМИКА фото №191на тензор эл.-магн. поля (Fab). Для эл.-магн. волн с длинами l в интервале ЭЛЕКТРОДИНАМИКА фото №192 не испытывающих поглощения в вакууме, но допускающих применение геом. оптики, обнаруживается, что в зависимости от поляризации и направления распространения их скорость (фазовая и групповая) может быть как меньше, так и больше "обычной скорости света" с на величину ЭЛЕКТРОДИНАМИКА фото №193 Классич. принцип причинности и второй постулат спец. теории относительности этим не нарушаются ввиду неоднородности и анизотропии самого вакуума, обусловливающего взаимную неинерциальность соседствующих наблюдателей.

Согласно (16), вследствие поляризации вакуума в квазиоднородных эл.-магн. полях Е, В<< Е c = В c смасштабами l~ с/w>>m е с2/е(Е+В), векторы индукции D и В в (22)

приобретают ещё дополнит. слагаемые электрич. поляризации Р и намагниченности М:

ЭЛЕКТРОДИНАМИКА фото №194

Поэтому даже в плоском пространстве-времени распространение света с волновым вектором k под углом q к однородному магн. полю В0 сопровождается двойным лучепреломлением- фазовая скорость волн u ф = w/k зависит от их поляризации (направления Е):

ЭЛЕКТРОДИНАМИКА фото №195

[ Е параллельно плоскости (k, B0)];

ЭЛЕКТРОДИНАМИКА фото №196

[ Е перпендикулярно плоскости (k, B0)], если

ЭЛЕКТРОДИНАМИКА фото №197

В таком намагниченном вакууме происходят параметрич. взаимодействие и распад волн (фотонов), образование гармоник, простых и ударных волн [С. Адлер (S. Adler), 1970; В. В. Железняков, А. Л. Фабрикант, 1982], а при движении зарядов наряду с магнитотормозным излучением возникают Черенкова - Вавилова излучение и переходное излучение[Т. Эрбер (Т. Erber), 1976; В. Л. Гинзбург, В. Н. Цытович, 1978]. При наличии реальной среды, напр. плазмы, многообразие явлений генерации излучения, пространственно-временной дисперсии и нелинейности волн значительно возрастает. Отметим, что многие имеющиеся здесь теоре-тич. предсказания Э. (особенно в задачах астрофизики), напр. коллективная аннигиляция сгустков электрон-пози-тронной плазмы с образованием когерентного g-излуче-ния, пока являются весьма экзотическими с точки зрения их наблюдательной проверки.

Макроскопическая электродинамика

С общих позиций Э. случай электрон-позитронного вакуума и даже плазмы во внеш. полях является не более чем характерным примером среды. В общем случае при наличии большого числа заряж. частиц (связанных или нет), возможность описания движения каждой из к-рых ограничена, хотя бы в силу квантово-статистич. законов, ур-ния Максвелла представляются стохастическими, описывающими эл.-магн. поля как случайные ф-ции координат и времени. Стохастическими являются и ур-ния движения вещества (зарядов среды), в частности материальные соотношения, характеризующие отклик на эл.-магн. поле, т. е. представляющие плотность тока как функционал поля: ЭЛЕКТРОДИНАМИКА фото №198 . Последний может быть нелинейным и нелокальным (интегродифференциальным) и, вообще говоря, определяется независимыми от Э. закономерностями устройства среды.

Макроскопические уравнения. Флуктуации обычно отходят на второй план при наличии достаточно большого кол-ва однотипных частиц на масштабе изменения поля. Тогда без существенных потерь информации об эл.-магн. процессах можно провести квантово-статистич. усреднение ур-ний (6), (7) (без магн. зарядов) и материальных соотношений, записав их как ур-ния макроскопич. электродинамики Для средних полей и токов:

ЭЛЕКТРОДИНАМИКА фото №199

На резких границах раздела в среде необходимы граничные условия для нормальных (n) и тангенциальных (t) компонент полей

ЭЛЕКТРОДИНАМИКА фото №200

Они вместе с выражениями для поверхностных плотности заряда а и тока i через j получаются из (23) предельным переходом (n -нормаль к границе раздела, направленная из первой во вторую часть среды). Здесь для определённости пространство-время предполагается плоским, а вакуум- однородным и изотропным, используется инерци-альная система отсчёта, к.-л. образом связанная со средой в целом. Все свойства среды, за исключением сторонних зарядов r ст и токов j ст, включены в новое поле электрич. индукции D п(t, r)[или полной электрич. поляризации P п(t, r)] и задаются функционалом j { Е, В}. В линейной Э. соответствующее материальное ур-ние имеет вид

ЭЛЕКТРОДИНАМИКА фото №201

учитывающий временную (частотную) и пространственную дисперсии, т. е. запаздывание и нелокальность эл.-магн. отклика среды (см. Диспергирующая среда). Эти явления обязаны, напр., собственным молекулярным колебаниям и конечности межатомных расстояний в твёрдом теле или длины свободного пробега ионов и электронов в плазме. Система (23)-(25) обладает полнотой, позволяя однозначно определить поля в любой области среды V, если для них заданы необходимые начальные и граничные условия; для учёта влияния среды вне рассматриваемой области V на процессы внутри неё на её границе 2 требуется ставить нелокальные, интегральные условия.

При таком подходе макроскопич. поля и движение отд. частиц среды выпадают из рассмотрения. Так, в отсутствие дисперсии, согласно Ома закону ji =silEl , плотность тока в проводнике при учёте только свободных зарядов полностью определяется тензором его проводимости sil и средним электрич. полем El . В соответствии с этим иногда делают дополнит. приближения. Скажем, в электростатике поле внутри проводника считается равным нулю, а свободные заряды - сосредоточенными только на его поверхности, хотя в действительности они отличны от нуля, по крайней мере в тонком поверхностном слое. Аналогично в магнитостатике сверхпроводников 1-го рода вследствие Мепснера эффекта предполагается невозможным существование объёмных внутренних плотностей тока и магн. поля, хотя они заведомо имеются в поверхностном слое конечной толщины (см. также Скин-эффект, Леонтовича граничное условие). Подобные дополнит. приближения не обязательны, поскольку ур-ния (23) позволяют учесть сколь угодно резкие изменения полей в пространстве и во времени, если в них не проведено усреднение по физически бесконечно малым объёму и интервалу времени. Последняя операция, часто используемая со времён Лоренца (1902), ведёт к более грубому пренебрежению флуктуаци-ями, чем статистич. усреднение, и может ограничивать возможности анализа пространственной и частотной дисперсии сред, напр. динамики поверхностных поляритонов. Что касается возможного отличия действующего на заряды поля Еg от среднего Е (т. н. поправки Лоренца, равной, напр., Еg - Е=4p Р п/3в кубич. кристалле или в газе нейтральных молекул), то в обоих способах усреднения оно предполагается принятым во внимание при микроскопия, выводе материальных соотношений благодаря учёту корреляций взаимного расположения частиц и их взаимной непроницаемости.

Дисперсионные и энергетические соотношения. В стационарной однородной среде удобно перейти к фурье-образам полей, получая, в частности, из (25)

ЭЛЕКТРОДИНАМИКА фото №202

ЭЛЕКТРОДИНАМИКА фото №203

Полный тензор диэлектрической проницаемостиe пlj учитывает не только электрич., но и магн. свойства среды, т. е. влияние индукции В на D п. Он обладает определ. свойствами симметрии (см., напр., Анизотропная среда, Гиpo-тропная среда), а также аналитичности - как комплексная ф-ция своих комплексных аргументов w и k. Напр., согласно принципу причинности в устойчивой, в частности равновесной, среде при kЭЛЕКТРОДИНАМИКА фото №2040 тензор e пlj(w, kЭЛЕКТРОДИНАМИКА фото №2050) не имеет полюсов в верх. полуплоскости lmw>=0 для диэлектриков, имеет простой полюс 1/w для проводников и полюс второго порядка 1/w2 для сверхпроводников. При kЭЛЕКТРОДИНАМИКА фото №2060 сказанное заведомо справедливо лишь в отношении обратного тензора (e пlj)-1 (w, k), связывающего поле Е с вызывающей его индукцией D п, к-рой можно независимо, в отличие от Е, управлять путём изменения внеш. зарядов r ст(t, r) (Д. А. Киржниц, 1976). Отсюда можно прийти к дисперсионным соотношениям, связывающим вещественную и мнимую части e пlj(w, kЭЛЕКТРОДИНАМИКА фото №2070) [или (e пlj)-1(w, k)]. Существуют и др. феноменологич. соотношения и ограничения на возможный вид тензора проницаемости. Так, поскольку для монохроматич. волны E=Re [ Е0 ехр (- iwt + ikr)]. свещественными w и k тепловая энергия, выделяющаяся в единице объёма за единицу времени ( джоулееы потери), равна Q п = (w/8p) [Ime пlj(w, k)].E j0E*l0, то в равновесной среде в соответствии с принципом возрастания энтропии должно быть Q п>0 (при w>>0) для любого комплексного Е0,

Справедливость указанного определения Q п в условиях изменения общей энергии среды и поля за счёт работы сторонних источников становится ясной, если усреднить по достаточно большим объёмам и интервалам времени вытекающее из (23) соотношение Пойнтинга:

ЭЛЕКТРОДИНАМИКА фото №208

Без микроскопич. анализа энергетич. смысл членов в (27) для диссипативной среды является, вообще говоря, неоднозначным. Лишь в прозрачной среде для квазимоно-хроматич. пакета однородных волн можно заранее указать ср. плотность энергии и её поток, а также групповую скорость волн u гp = S/w[Л. Бриллюэн (L. Brillouin), 1921; М. Е. Герценштейн, 1954]

ЭЛЕКТРОДИНАМИКА фото №209

При этом даже в однородной изотропной немагнитной среде без пространственной дисперсии, когда D п0 = e п(w)E0, на единицу объёма среды действуют не только сила Лоренца со стороны внеш. зарядов и токов и по-ндеромоторная сила, связанная с пространственной неоднородностью полей, но ещё и т. н. сила Абрагама (см. также Максвелла тензор натяжений), обусловленная нестационарностью полей,

ЭЛЕКТРОДИНАМИКА фото №210

(X. Вашини, В. И. Карпман, 1976).

Поляритоны (светоэкситоны). При учёте пространственной дисперсии в ур-ниях Максвелла для фурье-образов полей при замене (25) на (26) необходимо указать ещё дополнит. граничные условия, обусловливаемые физ. свойствами поверхности среды (С. И. Пекар, 1957; В. Л. Гинзбург, 1958) (см. Кристаллооптика). Эти условия определяют, в частности, эффективность возбуждения в ней разл. нормальных волн (поляритонов), в т. ч. поперечных (E | k )и продольных (E||k, D = B =0)(см. Плазмон). Дисперсия k а = ka(w) или wa= wa(k), а также поляризация Ea(k )и групповая скорость u гр=dwaldk всех этих волн ( а=1, 2, 3, ...), согласно (23), находятся из однородной системы алгебраических ур-ний [w2 с~2e пlj(w, k) - -k2dij + kikj]E j(w,k) =0. Для решения разл. задач, напр. об излучении сторонних источников или о развитии неустойчивости волн в неравновесной среде, широко применяется т. н. гамильтонов метод анализа поля излучения, основанный на его разложении по нормальным волнам (В. Л. Гинзбург, 1940).

Без учёта пространственной дисперсии, т. е. зависимости e пlj от волнового вектора k, при решении граничной задачи остаются, как и в вакууме, только две, различающиеся поляризациями Е0, е , обыкновенная ( а = о )и необыкновенная ( а = е )волны k0, e(w) (см. Френеля уравнение), а также продольные колебания на дискретных частотах, для к-рых dete пlj(w||)=0. При решении начальной задачи имеющаяся частотная дисперсия e пlj(w) сказывается более явно и поэтому даже в изотропной среде благодаря поляризац. вырождению k0(w) = ke(w)может быть неск. дисперсионных кривых w а(k )-в соответствии с числом разл. свободных самосогласованных колебаний зарядов среды и поля с заданными волновым k и поляризационным Е векторами. На рис. 3 приведён схематич. вид спектра нормальных волн в случае материального соотношения

ЭЛЕКТРОДИНАМИКА фото №211

отвечающего модели изотропной среды практически неподвижных молекул с двумя энергетич. состояниями ЭЛЕКТРОДИНАМИКА фото №212, ЭЛЕКТРОДИНАМИКА фото №213 , их населённостями п1 и n2, концентрацией N, электрич. дипольным моментом перехода d с временем некогерентной релаксации Т2. Модель (28) лежит в основе квантовой электроники: при инверсии населённостей (n1 2 )активных энергетич. уровней молекул образца среды в зависимости от скоростей релаксации поляризации Р п и поля Е возникает неустойчивость одной из двух волн w1,2(k), ведущая к мазерной генерации (Imw1>0; см. Лазер )либо к сверхизлучению Дикке (R. Dicke) (Im w2>0).

ЭЛЕКТРОДИНАМИКА фото №214

Рис. 3. Качественный вид дисперсионных кривых нормальных волн в среде, состоящей из двухуровневых молекул - осцилляторов.



Магнитная и электрическая восприимчивости. В Э. сплошных сред часто используется отличная от (23), более симметричная форма ур-ний. Она основана на выделении тока проводимости "свободных" зарядов j0 (посредством введения к.-л. тензора проводимости) и намагниченности М', позволяющей ввести новый вектор напряжённости магн. поля H(t, r) = В-4p М' и новые тензоры магнитной проницаемости ЭЛЕКТРОДИНАМИКА фото №215(t, t', r, r' )и mij(w, k), играющие в ф-лах вида (25), (26) роль, аналогичную вектору Е и переопределённым тензорам ЭЛЕКТРОДИНАМИКА фото №216 и eij соответственно. В результате полная плотность тока разлагается на 3 части: j{E,B}=j0 + crotM' + д P'/дt, а индукция магн. поля В становится аналогичной вновь переопределённой индукции электрич. поля D=E+4pP', выражающейся через "оставшуюся" поляризацию Р' (электрич. дипольный момент единицы объёма).

В условиях пространственной дисперсии среды, не говоря уже об её нелинейности, макроскопич. процедура выделения j0, М', Р' и введения новых ЭЛЕКТРОДИНАМИКА фото №217 по старым ЭЛЕКТРОДИНАМИКА фото №218, e пij неоднозначна. Это обстоятельство обуслов-лено невозможностью строго разделить замкнутые и незамкнутые токи или токи "свободных" и "связанных" зарядов, особенно для эл.-магн. полей с характерными масштабами, к-рые не могут считаться большими по сравнению с размерами области локализации "связанных" зарядов, напр. электронов в молекулах. Причиной неоднозначности может служить релятивистская взаимосвязь Р' с М' или Р' с j0, скажем, в многокомпонентной среде при наличии неск. потоков зарядов в каждом элементарном объёме dV. Даже в простейшем случае непроводящей изотропной (негиротропной и немагнитоактивной) линейной однородной стационарной среды, где общее выражение для полной проницаемости суть

ЭЛЕКТРОДИНАМИКА фото №219

(e| и e|| -диэлектрич. проницаемости среды соответственно в случаях, когда Е перпендикулярно и параллельно k), связь прежних фурье-образов D пi =e пijE j можно заменить, напр., на две эквивалентные пары новых связей (А. М. Игнатов, А. А. Рухадзе, 1981):

ЭЛЕКТРОДИНАМИКА фото №220

Тем не менее в известных приближениях определённое разделение удаётся провести либо из микроскопич. соображений, либо за счёт дополнит. условий в к.-л. частных случаях.

Движущиеся среды. Для указанного разложения j {E, В} ур-ния (23) принимают вид

ЭЛЕКТРОДИНАМИКА фото №221

В ( Т )включены ещё эфф. магн. заряды и токи, иногда используемые, напр., для удовлетворения определ. граничным условиям при описании свойств неоднородных сред или при переходе во вращающуюся систему отсчёта с целью отыскания решений граничных задач путём применения двойственности перестановочной принципа (преобразований дуальности Лармора - Пистолькорса), обобщающего (10) на случай макроскопич. Э. Ур-ния (6'), (7') сохраняют свой вид при переходе в произвольную инерци-альную систему отсчёта (относительно к-рой среда равномерно движется с локальной скоростью и), если учесть релятивистские преобразования токов ja0, ja ст,ЭЛЕКТРОДИНАМИКА фото №222и полей (2). Поля D и Н преобразуются аналогично полям Е и В соответственно и образуют тензор индукции Нab, аналогичный Fab (Г). Поэтому ур-ниям (6'), (7') можно придать релятивистски ковариантную форму:

ЭЛЕКТРОДИНАМИКА фото №223

Однако в общем случае, в отличие от силы Лоренца в вакууме (1') или (11), заменяющие её материальные соотношения не обладают релятивистской ковариантностью, поскольку явно выделена локально инерциальная система отсчёта, связанная со средой. Ситуация упрощается в среде без пространственно-временной дисперсии, имеющей вещественные проницаемости и проводимости, для простоты предполагающиеся изотропными в этой системе отсчёта:

ЭЛЕКТРОДИНАМИКА фото №224

В произвольной системе отсчёта эти материальные соотношения принимают вид [Г. Минковский (G. Minkowski), 1908]

ЭЛЕКТРОДИНАМИКА фото №225

ЭЛЕКТРОДИНАМИКА фото №226

Их явная ковариантность устанавливается эквивалентной формой записи (И. Е. Тамм, 1924; М. И. Рязанов, 1957; Б. М. Болотовский, С. Н. Столяров, 1977)

ЭЛЕКТРОДИНАМИКА фото №227

Соответствующим образом меняются и граничные условия (24). Напр., в отсутствие поверхностных зарядов и токов на границе раздела сред, движущейся с локальной скоростью u', наряду с нормальными компонентами индукций D, В должны быть непрерывны тангенциальные компоненты векторов

ЭЛЕКТРОДИНАМИКА фото №228

Электромагнитные взаимодействия в среде. Неоднородное движение среды или движение одних элементов среды относительно других нарушает её изотропию и равновесность, делает возможными неустойчивость и усиление эл.-магн. волн за счёт кинетич. энергии вещества (см., напр., Неустойчивости плазмы), видоизменяет потенциалы Лье-нара - Вихерта, в частности кулоновское поле покоящегося заряда, а при наличии временной дисперсии частично переводит её в пространственную (и наоборот). Уже в покоящейся среде собственное поле и поле излучения к.-л. источников, напр. движущихся заряж. частиц, могут качественно отличаться от поля в вакууме, даже если отвлечься от их непосредств. столкновений с частицами среды, вызывающих искривление траекторий, ионизац. потери и др. Дело в том, что наряду с колебаниями эл.-магн. поля неизбежно должны возбуждаться самосогласованные колебания зарядов в среде; в частности, излучаться могут только нормальные волны. Так, на тормозное излучение, эл.-магн. массу, эфф. заряд и радиац. трение быстрой частицы принципиально влияет вызываемая её движением переполяризация среды (Э. Ферми, 1940). Эти явления наблюдаются, напр., при каналировании заряженных частиц в кристаллах или в газах. Обнаруживаются возможности Черенкова - Вавилова излучения, переходного излучения и ондуляторного излучения, аномального Доплера эффекта и др. особенности излучения монопольных, дипольных и мультипольных конфигураций зарядов. Изменяется характер распространения излучения, в т. ч. геом. оптика и дифракция, особенно в нестационарной и неоднородной среде. В результате меняется эффективность взаимодействия зарядов.

Ситуация может усложняться нелинейными свойствами эл.-магн. волн и их взаимодействий с частицами, а также разл. процессами рассеяния на упругих, тепловых и др. неэлектромагн. возбуждениях среды. Скажем, возможно нелинейное черепковское излучение под действием короткого импульса сильного эл.-магн. поля, возбуждающего на своём пути нелинейную поляризацию среды в отсутствие к.-л. сторонних зарядов и токов (см. также Электродинамика движущихся сред).

Лит.: Ландау Л. Д., Лифшиц Е. М., Теоретическая физика, т. 2, 4, 8, М., 1980-89; Джексон Дж., Классическая электродинамика, пер. с англ., М., 1965; Агранович В. М., Гинзбург В. Л., Кристаллооптика с учетом пространственной дисперсии и теория экситонов, 2 изд., М., 1979; Вейнберг С., Гравитация и космология, пер. с англ., М., 1975; Стражев В. И., Томиль-чик Л. М., Электродинамика с магнитным зарядом, Минск, 1975; Гинзбург В. Л., Теоретическая физика и астрофизика, 3 изд., М., 1987; Гроот С. Р. де, Сатторп Л. Г., Электродинамика, пер. с англ., М., 1982; Туров Е. А., Материальные уравнения электродинамики, М., 1983; Железняков В. В., Кочаровский В. В., Кочаровский Вл. В., Волны поляризации и сверхизлучение в активных средах, "УФН", 1989, т. 159, с. 193.

В. В. Кочаровский, Вл. В. Кочаровский.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия..1988.


Синонимы:
динамика, физика


Смотреть больше слов в «Физической энциклопедии»

ЭЛЕКТРОДИНАМИКА ДВИЖУЩИХСЯ СРЕД →← ЭЛЕКТРОДВИЖУЩАЯ СИЛА

Синонимы слова "ЭЛЕКТРОДИНАМИКА":

Смотреть что такое ЭЛЕКТРОДИНАМИКА в других словарях:

ЭЛЕКТРОДИНАМИКА

Э. называется тот отдел учения об электрических явлениях, в котором рассматриваются притяжения или отталкивания, которые возникают между проводниками, ... смотреть

ЭЛЕКТРОДИНАМИКА

        классическая, классическая (неквантовая) теория поведения электромагнитного поля (См. Электромагнитное поле), осуществляющего взаимодействие ме... смотреть

ЭЛЕКТРОДИНАМИКА

ЭЛЕКТРОДИНАМИКА. -и, ж. (спец.). Теория электромагнитных процессов вразличных средах и в вакууме. II прил. электродинамический, -ая, -ое.

ЭЛЕКТРОДИНАМИКА

электродинамика ж. Раздел физики, изучающий свойства и взаимодействие движущихся электрических зарядов и связанных с ними явлений (противоп.: электростатика).<br><br><br>... смотреть

ЭЛЕКТРОДИНАМИКА

электродинамика ж. физ.electrodynamics

ЭЛЕКТРОДИНАМИКА

электродинамика сущ., кол-во синонимов: 2 • динамика (18) • физика (55) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: динамика, физика

ЭЛЕКТРОДИНАМИКА

ЭЛЕКТРОДИНАМИКА классическая, классич. (неквантовая) теория поведения электромагнитного поля, осуществляющего взаимодействие между электрическими зар... смотреть

ЭЛЕКТРОДИНАМИКА

Сразу же после открытия Эрстеда физикам показалось вполне естественным объяснить его тем, что при прохождении электрического тока через проводник последний становится магнитом. Такое объяснение было принято Араго, оно было принято также и Био. Последний в 1820 году сделал следующее предположение. Когда прямолинейный ток действует на магнитную молекулу, то природа этого действия та же, что и для намагниченной стрелки, помещенной на периферии проводника в определенном направлении, постоянном по отношению к направлению вольтаического тока. Био и другие физики, разделявшие его мнение, объясняли электродинамическое действие взаимодействием элементарных магнитов, возникающих под действием тока в каждом проводнике: каждый проводник, по которому проходит ток, превращается в магнитную трубку. Совсем другое объяснение предложил Ампер… Но сначала несколько слов о его биографии. Андре-Мари Ампер (1775–1836) родился в небольшом поместье Полемье, купленном отцом в окрестностях Лиона. Исключительные способности Андре проявились еще в раннем возрасте. Он никогда не ходил в школу, но чтению и арифметике выучился очень быстро. Читал мальчик все подряд, что находил в отцовской библиотеке. Уже в 14 лет он прочитал все двадцать восемь томов французской «Энциклопедии». Особый интерес Андре проявлял к физико-математическим наукам. Но как раз в этой области отцовской библиотеки явно не хватало, и Андре начал посещать библиотеку Лионского колледжа, чтобы читать труды великих математиков. В возрасте 13 лет Ампер представил в Лионскую академию свои первые работы по математике. В 1789 году началась Великая французская буржуазная революция. Отца Ампера казнили Он остался без средств. Андре пришлось думать о средствах к существованию, и он решил переселиться в Лион, давать частные уроки математики до тех пор, пока не удастся устроиться штатным преподавателем в какое-либо учебное заведение. Расходы на жизнь неуклонно росли. Несмотря на все старания и экономию, средств, заработанных частными уроками, не хватало. Наконец, в 1802 году Ампера пригласили преподавать физику и химию в Центральную школу старинного провинциального города Буркан-Бреса, в 60 километрах от Лиона. С этого момента началась его регулярная преподавательская деятельность, продолжавшаяся всю жизнь. 4 апреля 1803 года Ампер был назначен преподавателем математики Лионского лицея. В конце 1804 года Ампер покинул Лион и переехал в Париж, где он получил должность преподавателя знаменитой Политехнической школы. В 1807 году Ампер был назначен профессором Политехнической школы. В 1808 году ученый получил место главного инспектора университетов. В период между 1809 и 1814 годами Ампер опубликовал несколько ценных работ по теории рядов. Время расцвета научной деятельности Ампера приходится на 1814–1824 годы и связано, главным образом, с Академией наук, в число членов которой он был избран 28 ноября 1814 года за свои заслуги в области математики. Практически до 1820 года основные интересы ученого сосредоточивались на проблемах математики, механики и химии. К его достижениям в области химии следует отнести открытие, независимо от Авогадро, закона равенства молярных объемов различных газов. Его по праву следует называть законом Авогадро — Ампера. Ученый сделал также первую попытку классификации химических элементов на основе сопоставления их свойств. Что же касается математики, то именно в этой области он достиг результатов, которые и дали основание выдвинуть его кандидатуру в Академию по математическому отделению. Ампер всегда рассматривал математику как мощный аппарат для решения разнообразных прикладных задач физики и техники. Вопросами физики в то время он занимался очень мало: известны лишь две работы этого периода, посвященные оптике и молекулярно-кинетической теории газов. В 1820 году датский физик Г.-Х. Эрстед обнаружил, что вблизи проводника с током отклоняется магнитная стрелка. Так было открыто замечательное свойство электрического тока — создавать магнитное поле. Ампер подробно исследовал это явление. Новый взгляд на природу магнитных явлений возник у него в результате целой серии экспериментов. Уже в конце первой недели напряженного труда он сделал открытие не меньшей важности, чем Эрстед, — открыл взаимодействие токов. 18 сентября 1820 года он сообщил Парижской Академии наук о своем открытии пондеромоторных взаимодействий токов, которые он назвал электродинамическими. Точнее говоря, в этом своем первом докладе Ампер назвал эти действия «вольтаическими притяжениями и отталкиваниями», но потом стал именовать их «притяжениями и отталкиваниями электрических токов». В 1822 году он ввел термин — «электродинамический». Тогда же он продемонстрировал свои первые опыты и заключил их следующими словами: «В связи с этим я свел все магнитные явления к чисто электрическим эффектам». На заседании 25 сентября он развил эти идеи далее, демонстрируя опыты, в которых спирали, обтекаемые током (соленоиды), взаимодействовали друг с другом как магниты. Объяснение Ампера является его выдающимся вкладом в науку: не проводник, по которому течет ток, становится магнитом, а, наоборот, магнит представляет собой совокупность токов. В самом деле, говорит Ампер, если мы предположим, что в магните присутствует совокупность круговых токов, текущих в плоскостях, точно перпендикулярных его оси, в одном и том же направлении, то ток, идущий параллельно оси магнита, окажется направленным под углом к этим круговым токам, что и вызовет электродинамическое взаимодействие, стремящееся сделать все токи параллельными и направленными в одну сторону. Если прямолинейный проводник закреплен, а магнит подвижен, то отклоняется магнит; если же магнит закреплен, а проводник подвижен, то движется проводник. Как пишет в своей книге Марио Льоцци: «Он (Ампер. — Прим. авт.) подумал, что если магнит понимать как систему круговых параллельных токов, направленных в одну сторону, то спираль из металлической проволоки, по которой проходит ток, должна вести себя как магнит, т. е. должна принимать определенное положение под воздействием магнитного поля Земли и иметь два полюса. Опыт подтвердил предположения относительно поведения такой спирали под действием магнита, но не совсем ясны были результаты опыта, относящиеся к поведению спирали под действием магнитного поля Земли. Тогда Ампер решил взять для выяснения этого вопроса один-единственный виток проводника с током; оказалось, что виток ведет себя точно как магнитный листок. Таким образом, обнаружилось непонятное явление: один-единственный виток ведет себя как магнитная пластина, а спираль, которую Ампер считал в точности эквивалентной системе магнитных пластинок, вела себя не совсем как магнит. Пытаясь разобраться, в чем тут дело, Ампер с удивлением обнаружил, что в электродинамических явлениях спиральный проводник ведет себя точно как прямолинейный проводник с теми же концами. Из этого Ампер заключил, что в отношении электродинамических и электромагнитных действий элементы тока можно складывать и разлагать по правилу параллелограмма. Поэтому элемент тока можно разложить на две составляющие, из которых одна направлена параллельно оси, а другая — перпендикулярно. Если суммировать результаты действия разных элементов спирали, то результирующая окажется эквивалентной прямолинейному току, идущему по оси, и системе круговых токов, расположенных перпендикулярно оси и направленных в одну сторону. Поэтому, чтобы спираль, по которой проходит ток, вела себя точно как магнит, нужно скомпенсировать действие прямолинейного тока. Этого Ампер, как известно, добился очень просто, выгнув вдоль оси концы проводника. Но все же существовало различие между спиралью, по которой проходит ток, и магнитом: полюса спирали находились только на концах, тогда как полюса магнита — во внутренних точках. Чтобы устранить и это последнее различие, Ампер оставил свою первоначальную гипотезу о токах, прямо перпендикулярных оси магнита, и принял, что они расположены в плоскостях, находящихся под разными углами к оси». Новые идеи Ампера были поняты далеко не всеми учеными. Не согласились с ними и некоторые из его именитых коллег. Современники рассказывали, что после первого доклада Ампера о взаимодействии проводников с током произошел следующий любопытный эпизод. «Что же, собственно, нового в том, что вы нам сообщили? — спросил Ампера один из его противников. — Само собою ясно, что если два тока оказывают действие на магнитную стрелку, то они оказывают действие и друг на друга». Ампер не сразу нашелся, что ответить на это возражение. Но тут на помощь ему пришел Араго. Он вынул из кармана два ключа и сказал: «Вот каждый из них тоже оказывает действие на стрелку, однако же, они никак не действуют друг на друга, и потому ваше заключение ошибочно. Ампер открыл, по существу, новое явление, куда большего значения, чем открытие уважаемого мной профессора Эрстеда». Несмотря на нападки своих научных противников, Ампер продолжал свои эксперименты. Он решил найти закон взаимодействия токов в виде строгой математической формулы и нашел этот закон, который носит теперь его имя. Так шаг за шагом в работах Ампера вырастала новая наука — электродинамика, основанная на экспериментах и математической теории. Все основные идеи этой науки, по выражению Максвелла, по сути дела, «вышли из головы этого Ньютона электричества» за две недели. С 1820 по 1826 год Ампер публикует ряд теоретических и экспериментальных работ по электродинамике и почти на каждом заседании физического отделения Академии выступает с докладом на эту тему. В 1826 году выходит из печати его итоговый классический труд «Теория электродинамических явлений, выведенная исключительно из опыта». Эффект взаимодействия проводов с током и магнитных полей сейчас используется в электродвигателях, в электрических реле и во многих электроизмерительных приборах.... смотреть

ЭЛЕКТРОДИНАМИКА

ЭЛЕКТРОДИНАМИКА(от слова электричество, и греч. dinamis - сила). Часть физики, трактующая о действии электрических токов.Словарь иностранных слов, воше... смотреть

ЭЛЕКТРОДИНАМИКА

Деклинатор Декларант Декламатор Декатрон Декатлон Декарт Деканат Декан Декалитр Декалин Дек Дата Даром Дарма Дарина Дари Дар Данте Дант Данио Данило Данил Даниил Дан Дамка Даменит Даман Дама Далматин Далматик Далеко Дакрон Дакрил Дакота Дакка Дакар Дак Аэта Аэротенк Аэротанк Аэрон Аэролит Аэро Аэлит Атрек Атомник Атомарин Атом Атм Атерома Артемон Артемида Артем Артек Артамон Арталин Арт Арон Аромат Арно Арник Армида Армад Арма Арлекин Арктика Аркан Аркад Арка Арк Арион Арин Ариман Арида Ариан Ареола Аренда Арен Арек Ареал Арден Ардалион Арат Арам Арак Аорта Аонида Аон Антра Антимир Антикор Антик Антидор Анти Ант Анри Анорак Анод Аноа Анлимитед Анкетка Анкета Анкерок Анкерит Анкер Анк Аниматор Анимато Аним Анилид Аник Анид Анетол Анероид Анекдотик Анекдот Андре Анда Анат Аналитик Аналект Амт Амрита Амон Амок Амниот Амин Амилоид Амилен Амилан Амил Амикрон Амидол Амид Амиант Американоид Америка Амер Амати Аматер Аман Амад Алтарник Алоэ Алма Алкоран Алкометр Алкин Алкен Алкание Алкандр Алкан Алкадиен Алинеатор Алин Аликанте Алик Аленка Ален Алеатико Алдар Алдан Аларм Алан Актиноид Актинид Актин Актерка Актер Акт Акроним Акролеин Акрилат Акриламид Акрил Акридин Акрид Акр Аконит Акно Акмола Акм Аклина Аккра Аккорд Аккерман Аким Акилина Акие Аки Акарин Акантод Акант Акан Академик Декокт Деконт Декор Декорт Дели Деликатно Деликт Демин Демократ Акад Аир Демократка Аимак Демон Ден Денара Дер Дерма Дермат Аил Дерматин Аида Адрон Адриатик Адриано Адмирал Админ Адлер Адермин Дерматол Детина Аденит Адат Адамит Адам Адалин Ада Детка Аант Аден Аденома Дерн Адриан... смотреть

ЭЛЕКТРОДИНАМИКА

ЭЛЕКТРОДИНАМИКА классическая, теория неквантовых электромагнитных процессов, в которых основную роль играют взаимодействия между заряженными частицами в различных средах и в вакууме. Становлению электродинамики предшествовали труды Ш. Кулона, Ж. Био, Ф. Савара, Х. Эрстеда, А. Ампера и др. М. Фарадей открыл закон электромагнитной индукции и ввел понятия электрического и магнитных полей как самостоятельных субстанций (1831). Обобщив предыдущие открытия и опираясь на фарадеевское понятие о поле, Дж.К. Максвелл в 1864 сформулировал уравнения для электромагнитного поля, которые стали общепринятыми после открытия электромагнитных волн Г. Герцем (1886 - 89). Все неквантовые электромагнитные явления можно описать с помощью уравнений Максвелла, которые устанавливают связь величин, характеризующих электрическое и магнитное поля, с распределением зарядов и токов в среде. Электродинамика квантовой области явлений (малые пространственно-временные масштабы, высокие энергии) называется квантовой электродинамикой и является разделом квантовой теории поля. Электродинамика - основа электротехники (в том числе электроэнергетики), радиотехники, телевидения, большинства средств связи и вычислительной техники. <br>... смотреть

ЭЛЕКТРОДИНАМИКА

ЭЛЕКТРОДИНАМИКА классическая, теория электромагнитных процессов в различных средах и в вакууме. Охватывает огромную совокупность явлений, в которых основную роль играют взаимодействия между заряженными частицами, осуществляемые посредством электромагнитного поля. Все электромагнитные явления можно описать с помощью уравнений Максвелла, которые устанавливают связь величин, характеризующих электрические и магнитные поля, с распределением в пространстве зарядов и токов. Содержание четырех уравнений Максвелла для электромагнитного поля качественно сводится к следующему:..1) магнитное поле порождается движущимися зарядами и переменным электрическим полем (током смещения);..2) электрическое поле с замкнутыми силовыми линиями (вихревое поле) порождается переменным магнитным полем;..3) силовые линии магнитного поля всегда замкнуты (это означает, что оно не имеет источников - магнитных зарядов, подобных электрическим);..4) электрическое поле с незамкнутыми силовыми линиями (потенциальное поле) порождается электрическими зарядами - источниками этого поля. Из теории Максвелла вытекает конечность скорости распространения электромагнитного взаимодействия и существование электромагнитных волн.<br><br><br>... смотреть

ЭЛЕКТРОДИНАМИКА

ЭЛЕКТРОДИНАМИКА классическая - теория электромагнитных процессов в различных средах и в вакууме. Охватывает огромную совокупность явлений, в которых основную роль играют взаимодействия между заряженными частицами, осуществляемые посредством электромагнитного поля. Все электромагнитные явления можно описать с помощью уравнений Максвелла, которые устанавливают связь величин, характеризующих электрические и магнитные поля, с распределением в пространстве зарядов и токов. Содержание четырех уравнений Максвелла для электромагнитного поля качественно сводится к следующему:..1) магнитное поле порождается движущимися зарядами и переменным электрическим полем (током смещения);..2) электрическое поле с замкнутыми силовыми линиями (вихревое поле) порождается переменным магнитным полем;..3) силовые линии магнитного поля всегда замкнуты (это означает, что оно не имеет источников - магнитных зарядов, подобных электрическим);..4) электрическое поле с незамкнутыми силовыми линиями (потенциальное поле) порождается электрическими зарядами - источниками этого поля. Из теории Максвелла вытекает конечность скорости распространения электромагнитного взаимодействия и существование электромагнитных волн.<br>... смотреть

ЭЛЕКТРОДИНАМИКА

классическая, теория неквантовых электромагнитных процессов, в которых основную роль играют взаимодействия между заряженными частицами в различных средах и в вакууме. Становлению электродинамики предшествовали труды Ш. Кулона, Ж. Био, Ф. Савара, Х. Эрстеда, А. Ампера и др. М. Фарадей открыл закон электромагнитной индукции и ввел понятия электрического и магнитных полей как самостоятельных субстанций (1831). Обобщив предыдущие открытия и опираясь на фарадеевское понятие о поле, Дж.К. Максвелл в 1864 сформулировал уравнения для электромагнитного поля, которые стали общепринятыми после открытия электромагнитных волн Г. Герцем (1886 - 89). Все неквантовые электромагнитные явления можно описать с помощью уравнений Максвелла, которые устанавливают связь величин, характеризующих электрическое и магнитное поля, с распределением зарядов и токов в среде. Электродинамика квантовой области явлений (малые пространственно-временные масштабы, высокие энергии) называется квантовой электродинамикой и является разделом квантовой теории поля. Электродинамика - основа электротехники (в том числе электроэнергетики), радиотехники, телевидения, большинства средств связи и вычислительной техники.... смотреть

ЭЛЕКТРОДИНАМИКА

- классическая - теория электромагнитных процессов вразличных средах и в вакууме. Охватывает огромную совокупность явлений, вкоторых основную роль играют взаимодействия между заряженными частицами,осуществляемые посредством электромагнитного поля. Все электромагнитныеявления можно описать с помощью уравнений Максвелла, которые устанавливаютсвязь величин, характеризующих электрические и магнитные поля, сраспределением в пространстве зарядов и токов. Содержание четырехуравнений Максвелла для электромагнитного поля качественно сводится кследующему:..1) магнитное поле порождается движущимися зарядами ипеременным электрическим полем (током смещения);..2) электрическое поле сзамкнутыми силовыми линиями (вихревое поле) порождается переменныммагнитным полем;..3) силовые линии магнитного поля всегда замкнуты (этоозначает, что оно не имеет источников - магнитных зарядов, подобныхэлектрическим);..4) электрическое поле с незамкнутыми силовыми линиями(потенциальное поле) порождается электрическими зарядами - источникамиэтого поля. Из теории Максвелла вытекает конечность скоростираспространения электромагнитного взаимодействия и существованиеэлектромагнитных волн.... смотреть

ЭЛЕКТРОДИНАМИКА

1) Орфографическая запись слова: электродинамика2) Ударение в слове: электродин`амика3) Деление слова на слоги (перенос слова): электродинамика4) Фонет... смотреть

ЭЛЕКТРОДИНАМИКА

классическая, теория эл.-магн. процессов в разл. средах и в вакууме. Охватывает огромную совокупность явлений, в к-рых осн. роль играют взаимодействия ... смотреть

ЭЛЕКТРОДИНАМИКА

ж.electrodynamics- адронная электродинамика- безмассовая квантовая электродинамика- вычислительная электродинамика- двумерная квантовая электродинамика... смотреть

ЭЛЕКТРОДИНАМИКА

корень - ЭЛЕКТР; соединительная гласная - О; корень - ДИНАМ; суффикс - ИК; окончание - А; Основа слова: ЭЛЕКТРОДИНАМИКВычисленный способ образования сл... смотреть

ЭЛЕКТРОДИНАМИКА

классическая - раздел физики, в к-ром рассматриваются законы движения и взаимодействия электрич. зарядов. В основе Э. лежат Максвелла уравнения и предс... смотреть

ЭЛЕКТРОДИНАМИКА

Ударение в слове: электродин`амикаУдарение падает на букву: аБезударные гласные в слове: электродин`амика

ЭЛЕКТРОДИНАМИКА

эле́ктродина́мика, эле́ктродина́мики, эле́ктродина́мики, эле́ктродина́мик, эле́ктродина́мике, эле́ктродина́микам, эле́ктродина́мику, эле́ктродина́мики, эле́ктродина́микой, эле́ктродина́микою, эле́ктродина́миками, эле́ктродина́мике, эле́ктродина́миках (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») . Синонимы: динамика, физика... смотреть

ЭЛЕКТРОДИНАМИКА

сущ. жен. рода, только ед. ч.физ.електродинамікаот слова: электродинамик сущ. муж. родаелектродинамік

ЭЛЕКТРОДИНАМИКА

электродинамика [см. электро... + динамика] - раздел физики, в котором изучаются свойства и взаимодействие движущихся электрических зарядов, т. е. явления, связанные с взаимодействием электрических токов, образованием электромагнитных полей и их распространением в различных средах (ср. электростатика); квантовая э. - см. квантовый. <br><br><br>... смотреть

ЭЛЕКТРОДИНАМИКА

electrodynamics* * *электродина́мика ж.electrodynamicsкосми́ческая электродина́мика — cosmic(al) electrodynamics* * *electrodynamicsСинонимы: динамик... смотреть

ЭЛЕКТРОДИНАМИКА

ЭЛЕКТРОДИНАМИКА, в физике - область, изучающая взаимодействие между электрическим и магнитным полями и заряженными телами. Начало этой дисциплине полож... смотреть

ЭЛЕКТРОДИНАМИКА

↑ поверхностный скин - эффект, поверхностный эффект.магниторезистивный эффект.импеданс.переходный процесс.Синонимы: динамика, физика

ЭЛЕКТРОДИНАМИКА

наук., физ. електродина́міка макроскопи́ческая электродина́мика — макроскопі́чна електродина́міка микроскопи́ческая электродина́мика — мікроскопі́чна електродина́міка - квантовая электродинамика - классическая электродинамика - нелинейная электродинамика Синонимы: динамика, физика... смотреть

ЭЛЕКТРОДИНАМИКА

ж. elettrodinamica f - квантовая электродинамика- классическая электродинамика- космическая электродинамика- релятивистская электродинамика

ЭЛЕКТРОДИНАМИКА

эле`ктродина'мика, эле`ктродина'мики, эле`ктродина'мики, эле`ктродина'мик, эле`ктродина'мике, эле`ктродина'микам, эле`ктродина'мику, эле`ктродина'мики, эле`ктродина'микой, эле`ктродина'микою, эле`ктродина'миками, эле`ктродина'мике, эле`ктродина'миках... смотреть

ЭЛЕКТРОДИНАМИКА

Rzeczownik электродинамика f elektrodynamika f

ЭЛЕКТРОДИНАМИКА

-и, ж. Раздел физики, изучающий движение и взаимодействие электрических зарядов и связанные с этими процессами явления.Синонимы: динамика, физика

ЭЛЕКТРОДИНАМИКА

электродинамикаאֶלֶקטרוֹדִינָמִיקָה נ'Синонимы: динамика, физика

ЭЛЕКТРОДИНАМИКА

ж. физ.électrodynamique fСинонимы: динамика, физика

ЭЛЕКТРОДИНАМИКА

ЭЛЕКТРОДИНАМИКА электродинамики, мн. нет, ж. (см. электричество и динамика) (физ.). Отдел физики, изучающий свойства электрического тока, электричества в движении; противоп. электростатика.<br><br><br>... смотреть

ЭЛЕКТРОДИНАМИКА

ж. физ. électrodynamique f

ЭЛЕКТРОДИНАМИКА

f.electrodynamicsСинонимы: динамика, физика

ЭЛЕКТРОДИНАМИКА

ЭЛЕКТРОДИНАМИКА. -и, ж. (спец.). Теория электромагнитных процессов в различных средах и в вакууме. || прилагательное электродинамический, -ая, -ое.

ЭЛЕКТРОДИНАМИКА

Начальная форма - Электродинамика, слово обычно не имеет множественного числа, женский род, множественное число, неодушевленное, родительный падеж

ЭЛЕКТРОДИНАМИКА

ж. физ.electrodinámica f

ЭЛЕКТРОДИНАМИКА

электродин'амика, -иСинонимы: динамика, физика

ЭЛЕКТРОДИНАМИКА

жElektrodynamik fСинонимы: динамика, физика

ЭЛЕКТРОДИНАМИКА

(1 ж)Синонимы: динамика, физика

ЭЛЕКТРОДИНАМИКА

electrodynamicsСинонимы: динамика, физика

ЭЛЕКТРОДИНАМИКА

electrodynamicsСинонимы: динамика, физика

ЭЛЕКТРОДИНАМИКА

электродинамикаСинонимы: динамика, физика

ЭЛЕКТРОДИНАМИКА

электродинамика ж Elektrodynamik fСинонимы: динамика, физика

ЭЛЕКТРОДИНАМИКА

电动力学 diàndònglìxuéСинонимы: динамика, физика

ЭЛЕКТРОДИНАМИКА

Ж мн. нет fiz. elektrodinamika (fizikanın elektrik cərəyanının xassələrindən bəhs edən hissəsi)

ЭЛЕКТРОДИНАМИКА

الكتروديناميك

ЭЛЕКТРОДИНАМИКА

ж. физ. электродинамика (физиканын бир бөлүгү; бул электр тогунун касиетин изилдейт).

ЭЛЕКТРОДИНАМИКА

электрадынаміка, -кі- электродинамика квантовая КЭД- электродинамика квантовая

ЭЛЕКТРОДИНАМИКА

ж. физ. elettrodinamica Итальяно-русский словарь.2003. Синонимы: динамика, физика

ЭЛЕКТРОДИНАМИКА

электродинамика = ж. electrodynamics.

ЭЛЕКТРОДИНАМИКА

электродинамика электродин`амика, -и

ЭЛЕКТРОДИНАМИКА

физ. электрадынаміка, жен.

ЭЛЕКТРОДИНАМИКА

электродинамика электродинамика

ЭЛЕКТРОДИНАМИКА

электрадынаміка, -кі

ЭЛЕКТРОДИНАМИКА

ж. Elektrodynamik f.

ЭЛЕКТРОДИНАМИКА

электродинамика

ЭЛЕКТРОДИНАМИКА

электрдинамика

ЭЛЕКТРОДИНАМИКА

электрдинамика

ЭЛЕКТРОДИНАМИКА

электрдинамика

T: 282