ФИЗИКА


наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, св-ва и строение материи и законы её движения. Понятия Ф. и её законы лежат в основе всего естествознания. Ф. относится к точным наукам и изучает количеств. закономерности явлений.
Слово «Ф.» происходит от греч. physis — природа. В эпоху античной культуры наука охватывала всю совокупность знаний о природных явлениях. По мере дифференциации знаний и методов исследований из неё выделились отд. науки, в т. ч. и Ф. Границы, отделяющие Ф. от др. естеств. наук, в значит. мере условны и меняются с течением времени.
Ф.— эксперим. наука: её законы базируются на фактах, установленных опытным путём. Законы Ф. представляют собой количеств. соотношения и формулируются на матем. языке. Различают экспериментальную Ф.— опыты, проводимые для обнаружения новых фактов и проверки известных физ. законов, и теоретическую Ф., цель к-рой состоит в формулировке законов природы и объяснении конкретных явлений на основе этих законов, а также в предсказании новых явлений. При изучении любого явления опыт и теория в равной мере необходимы и взаимосвязаны.
В соответствии с многообразием исследуемых объектов и форм движения материи Ф. подразделяется на ряд дисциплин (разделов), в той или иной мере связанных друг с другом; это деление не однозначно, и его можно проводить, руководствуясь разл. критериями. По изучаемым объектам Ф. делится на Ф. элем. ч-ц, Ф. ядра, Ф. атомов и молекул, Ф. газов и жидкостей, Ф. тв. тела, Ф. плазмы. Др. критерий — изучаемые процессы или формы движения материи. Соответственно в Ф. выделяют: механику материальной точки и тв.тела, механику сплошных сред (включая акустику), термодинамику и статистич. механику, электродинамику (включая оптику), теорию тяготения, квант. механику и квант. теорию поля. Указанные разделы Ф. частично перекрываются вследствие глубокой внутр. взаимосвязи между объектами материального мира и процессами, в к-рых они участвуют. По целям исследования выделяют также прикладную Ф. (напр., прикладная оптика).
Особо выделяют в Ф. учение о колебаниях и волнах, что обусловлено общностью закономерностей колебат. процессов разл. физ. природы и методов их исследования. Здесь рассматриваются механич., акустич., электрич. и оптич колебания и волны с единой точки зрения.
Совр. Ф. содержит небольшое число фундам. физ. теорий, охватывающих все разделы Ф. Эти теории представляют собой квинтэссенцию знаний о характере физ. процессов и явлений, приближённое, но наиболее полное отображение разл. форм движения материи.
Основные этапы развития физики
Физ. явления издавна привлекали внимание людей. В 6 в. до н. э.— 2 в. н. э. впервые зародились идеи об ат. строении в-ва (Демокрит, Эпикур, Лукреций), была разработана геоцентрич. система мира (Птолемей), установлены простейшие законы статики (правило рычага), открыты закон прямолинейного распространения и закон отражения света, сформулированы начала гидростатики (закон Архимеда), наблюдались простейшие проявления электричества и магнетизма. Итог приобретённых знаний в 4 в. до н. э. был подведён Аристотелем. Признавая значение опыта, Аристотель не считал его гл. критерием достоверности знания, отдавая предпочтение умозрит. представлениям. В средние века учение Аристотеля было канонизировано церковью, что надолго затормозило развитие науки.
Развитие Ф. как науки в совр. смысле этого слова началось в 17 в. и связано в первую очередь с именем итал. учёного Г. Галилея, к-рый понял необходимость матем. описания движения. Он показал, что воздействие на данное тело окружающих тел определяет не скорость, как считалось в учении Аристотеля, а ускорение тела. Это утверждение — первая формулировка закона инерции. Галилей открыл принцип относительности в механике, доказал независимость ускорения свободного падения тел от их плотности и массы, обосновывал теорию Коперника и получил значит. результаты в астрономии, в изучении оптич., тепловых и др. явлений. Ученик Галилея итал. учёный Э. Торричелли установил существование атм. давления и создал первый барометр. Англ. учёный Р. Бойль и франц. учёный Э. Мариотт исследовали упругость газов и сформулировали первый газовый закон, носящий их имя. Голл. учёный В. Снелль и франц. учёный Р. Декарт открыли закон преломления света, был создан микроскоп. В 1600 англ. учёный У. Гильберт разграничил электрич. и магн. явления и доказал, что Земля — гигантский магнит.
Осн. достижение Ф. 17 в.— создание классич. механики; И. Ньютон в труде «Математические начала натуральной философии» (1687) сформулировал все осн. законы этой науки (см. НЬЮТОНА ЗАКОНЫ МЕХАНИКИ). С появлением механики Ньютона было окончательно понято, что задача науки состоит в отыскании наиболее общих количественно формулируемых законов природы. Фундам. значение имело введение Ньютоном понятия состояния, к-рое стало одним из осн. для всех физ. теорий. Состояния систем тел в механике полностью определяются координатами и импульсами тел системы. Если известны силы вз-ствия тел, а также значения координат и импульсов в нач. момент времени, то из ур-ния движения (второй закон Ньютона) можно однозначно установить значения координат и импульсов в любой последующий момент.
Исходя из законов движения планет, установленных И. Кеплером, Ньютон открыл закон всемирного тяготения, с помощью к-рого удалось с замечат. точностью рассчитать движение Луны, планет и комет, объяснить приливы и отливы в океане. Им были впервые чётко сформулированы классич. представления об абсолютном пр-ве как вместилище материи, не зависящем от её св-в и движения, и абсолютном равномерно текущем времени. Вплоть до создания теории относительности эти представления не претерпели изменений. В это же время голл. учёный X. Гюйгенс и нем. учёный Г. Лейбниц сформулировали закон сохранения кол-ва движения; Гюйгенс создал теорию физ. маятника, построил часы с маятником. Началось развитие физ. акустики.
Со 2-й пол. 17 в. быстро развивается геом. оптика применительно к конструированию телескопов и др. оптич. приборов. Были заложены и основы физ. оптики: итал. физик Ф. Гримальди открыл дифракцию света, а Ньютон провёл фундам. исследования дисперсии света. В 1676 дат. астроном О. К. Рёмер впервые измерил скорость света. Почти одновременно возникли и начали развиваться корпускулярная и волновая теории света (см. ОПТИКА).
В работах Л. Эйлера и др. учёных была разработана динамика абсолютно тв. тела. Параллельно с развитием механики ч-ц и тв. тела шло развитие механики жидкости и газа. Трудами швейц. учёного Д. Бернулли, Эйлера, франц. учёного Ж. Лагранжа и др. в 1-й пол. 18 в. были заложены основы гидродинамики идеальной жидкости. В «Аналитической механике» (1788) Лагранжа ур-ния механики представлены в столь обобщённой форме, что в дальнейшем их удалось применить и к немеханическим, в частности эл.-магн., процессам. Была создана единая механич. картина мира, согласно к-рой всё богатство и многообразие мира — результат различия движения ч-ц (атомов), слагающих тела, движения, подчиняющегося законам Ньютона. Объяснение физ. явления считалось науч. и полным, если его удавалось свести к действию законов механики.
В др. областях Ф. происходило накопление опытных данных и формулировались простейшие эксперим. законы. Франц. физик Ш. Ф. Дюфе открыл существование двух родов электричества и установил характер их вз-ствия. Амер. учёный Б. Франклин установил закон сохранения электрич. заряда. Англ. учёный Г. Кавендиш и независимо франц. физик Ш. Кулон открыли осн. закон электростатики, определяющий силу вз-ствия неподвижных электрич. зарядов (Кулона закон). Трудами франц. учёного П. Бугера и нем. учёного И. Ламберта начала создаваться фотометрия. Было открыто инфракрасное (англ. учёные В. Гершель и У. Волластон) и ультрафиолетовое (нем. учёный И. Риттер, Волластон) излучения.
Заметный прогресс произошёл в исследовании тепловых явлений; было сформулировано понятие теплоёмкости, начато изучение теплопроводности и теплового излучения. Трудами М. В. Ломоносова, Бойля, англ. физика Р. Гука, Бернулли и др. были заложены основы мол .-кинетич. теории теплоты.
В нач. 19 в. борьба между корпускулярной и волн. теориями света завершилась победой волн. теории. Этому способствовало успешное объяснение англ. учёным Т. Юнгом и франц. учёным О. Ж. Френелем явления интерференции и дифракции света с помощью волн. теории. Было получено решающее доказательство поперечности световых волн (Френель, франц. учёный Д. Ф. Араго, Юнг). Рассматривая свет как поперечные волны в упругой среде (эфире), Френель установил количеств. закон, определяющий интенсивность преломлённых и отражённых световых волн.
Большое значение для развития Ф. имело открытие итал. учёными Л. Гальвани и А. Вольтой электрич. тока и создание гальванич. батарей. Было исследовано хим. действие тока (англ. учёные Г. Дэви, М. Фарадей), получена электрич. дуга (В. В. Петров). Открытие дат. физиком X. К. Эрстедом (1820) действия электрич. тока на магн. стрелку доказало связь между электрич. и магн. явлениями. В том же году франц. физик А. М. Ампер пришёл к выводу, что все магн. явления обусловлены движущимися заряж. ч-цами — электрич, током, и экспериментально установил закон, определяющий силу вз-ствия электрич. токов (Ампера закон). В 1831 Фарадей открыл явление электромагнитной индукции. Ранее Фарадей высказал гипотезу, согласно к-рой эл.-магн. вз-ствия осуществляются посредством промежуточного агента — эл.-магн. поля. Это послужило началом формирования новой науки о св-вах и законах поведения особой формы материи — эл.-магн. поля.
К 1-й пол. 19 в. были накоплены фактич. данные о макроскопич. св-вах тв. тел и установлены эмпирич. законы поведения тв. тела под влиянием механич. сил, темп-ры, электрич. и магн. полей, света и др. Исследование упругих св-в привело к открытию Гука закона (1660), электропроводности металлов — к установлению Ома закона (1826), тепловых св-в — закона теплоёмкостей (Дюлонга и Пти закона). Были открыты осн. магн. св-ва тв. тел, построена общая теория упругих св-в тв. тел (франц. учёные Л. М. Навье, О. Л. Коши).
Важнейшее значение для Ф. и всего естествознания имело открытие (нем. учёные Ю. Р. Майер, Г. Гельмгольц, англ. физик Дж. Джоуль) закона сохранения энергии, связавшего воедино все явления природы. В сер. 19 в. опытным путём была доказана эквивалентность кол-ва теплоты и работы и т. о. установлено, что теплота представляет собой особую форму энергии. Закон сохранения энергии стал осн. законом теории тепловых явлений (термодинамики) и получил название первого начала термодинамики. Фундам. закон теории теплоты — второе начало термодинамики — был сформулирован нем. физиком Р. Клаузиусом в 1850 (на основе результатов, полученных франц. учёным С. Карно в 1824) и англ. физиком У. Томсоном в 1851. Он является обобщением опытных данных, свидетельствующих о необратимости процессов в природе, и определяет направление возможных энергетических превращений. Значит. роль в построении термодинамики сыграли исследования франц. учёного Ж. Л. Гей-Люссака, на основе к-рых франц. физиком Б. Клапейроном было установлено ур-ние состояния идеальных газов, обобщённое в дальнейшем Д. И. Менделеевым.
Одновременно с развитием термодинамики развивалась и мол.-кинетич, теория тепловых процессов; были открыты физ. законы нового типа — статистические, в к-рых все связи между физ. величинами носят вероятностный характер. В 1859 англ. физик Дж. Максвелл, впервые введя в Ф. понятие вероятности, нашёл закон распределения молекул по скоростям (Максвелла распределение). Возможности мол.-кинетич. теории необычайно расширились, что привело в дальнейшем к созданию статистич. механики. Австр. физик Л. Больцман построил кинетическую теорию газов и дал статистич. обоснование законов термодинамики. Осн. проблема, к-рую удалось в значит. степени решить Больцману, заключается в согласовании обратимого во времени движения молекул с очевидной необратимостью макроскопич. процессов. Большое значение имела доказанная им теорема о равномерном распределении ср. кинетич. энергии по степеням свободы. Классич. статистич. механика была завершена в работах амер. физика Дж. У. Гиббса (1902), создавшего метод расчёта ф-ции распределения для любых систем в состоянии термодинамич. равновесия. Всеобщее признание статистич. механика получила в 20 в. после создания А. Эйнштейном и польск. физиком М. Смолуховским (1905—06) на основе мол.-кинетической теории количеств. теории броуновского движения, подтверждённой опытами франц. физика Ж. Б. Перрена.
Во 2-й пол. 19 в. процесс изучения эл.-магн. явлений завершился созданием Максвеллом классич., электродинамики. В своей осн. работе «Трактат об электричестве и магнетизме» (1873) он установил ур-ния для эл.-магн. поля (носящие его имя), к-рые объясняли все известные в то время факты с единой точки зрения и позволяли предсказывать новые явления. Эл.-магн. индукцию Максвелл интерпретировал как процесс порождения перем. магн. полем вихревого электрич. поля. Затем он предсказал обратный эффект — порождение магн. поля перем. электрич. полем (ток смещения). Важнейшим результатом теории Максвелла был вывод о конечности скорости распространения эл.-магн. вз-ствий, равной скорости света. Эксперим. обнаружение эл.-магн. волн нем. физиком Г. Герцем (1886—89) подтвердило справедливость этого вывода. Из теории Максвелла вытекало, что свет имеет эл.-магн. природу. Тем самым оптика стала одним из разделов электродинамики. В 1899 П. Н. Лебедев экспериментально обнаружил и измерил давление света, предсказанное теорией Максвелла. В 1895 А. С. Попов впервые использовал эл.-магн. волны для беспроволочной связи.
В 1859 трудами нем. учёных Г. Кирхгофа и Р. Бунзена заложены основы спектрального анализа. Продолжалось развитие механики сплошных сред. В акустике была разработана теория упругих колебаний и волн (Гельмгольц, англ. физик Рэлей). Возникла техника получения низких темп-р. Были получены в жидком состоянии все газы, кроме гелия. В 1908 голл. физику X. Камерлинг-Оннесу удалось ожижить и гелий.
Новый этап в развитии Ф. связан с открытием англ. физиком Дж. Томсоном в 1897 эл-на. Выяснилось, что атомы не элементарны, а представляют собой сложные системы, в состав к-рых входят эл-ны. В кон. 19 — нач. 20 вв. голл. физик X. А. Лоренц заложил основы электронной теории. Им были сформулированы ур-ния, описывающие элем. эл.-магн. процессы (Лоренца — Максвелла уравнения), к-рые связывают движение отд. заряж. ч-ц с создаваемым ими эл.-магн. полем. Электронная теория Лоренца дала возможность рассчитывать значения эл.-магн. хар-к в-ва в зависимости от частоты, темп-ры и т. д.
В нач. 20 в. стало ясно, что электродинамика требует коренного пересмотра представлений о пр-ве и времени, лежащих в основе классич. механики Ньютона. В 1905 Эйнштейн создал частную (специальную) относительности теорию — новое учение о пр-ве и времени. Эта теория исторически была подготовлена трудами Лоренца и франц. учёного А. Пуанкаре. Частная теория относительности показала, что свести эл.-магн. процессы к механич. процессам в гипотетической среде (эфире) невозможно. Стало ясно, что эл.-магн. поле представляет собой особую форму материи, поведение к-рой не подчиняется законам механики. В 1916 Эйнштейн построил общую теорию относительности — физ. теорию пр-ва, временя я тяготения. Эта теория ознаменовала новый этап в развитии теории тяготения.
На рубеже 19—20 вв. было положено начало величайшей революции в области Ф., связанной с возникновением и развитием квант. теории. В кон. 19 в. выяснилось, что распределение энергии теплового излучения по спектру, выведенное из закона классич. статистич. Ф. о равномерном распределении энергии по степеням свободы, противоречит опыту. Выход был найден в 1900 нем. физиком М. Планком, показавшим, что результаты теории согласуются с опытом, если предположить, что атом испускает эл.-магн. энергию не непрерывно, а отд. порциями — квантами. Энергия каждого такого кванта прямо пропорциональна частоте, а коэфф. пропорциональности явл. квант действия h=6,626•10-34 Дж•с, получивший впоследствии назв. постоянной Планка.
В 1905 Эйнштейн развил гипотезу Планка, предположив, что излучаемая порция эл.-магн. энергии поглощается также только целиком, т. е. ведёт себя подобно ч-це (позднее она была назв. фотоном). На основе этой гипотезы Эйнштейн объяснил закономерности фотоэффекта, не укладывающиеся в рамки классич. электродинамики. Т. о., на новом качеств. уровне была возрождена корпускулярная теория света. Свет ведёт себя подобно потоку ч-ц; но одновременно ему присущи и волн. св-ва (дифракция, интерференция). Следовательно, несовместимые с точки зрения классич. Ф. волн. и корпускулярные св-ва присущи свету в равной мере (дуализм света). «Квантование» излучения приводило к выводу, что энергия внутриатомных движений также изменяется только скачкообразно (дат. физик Н. Бор, 1913). К этому времени англ. физик Э. Резерфорд исследовал рассеяние альфа-частиц в-вом и на основе результатов эксперимента установил существование ат. ядра и построил планетарную модель атома. Однако, согласно электродинамике Максвелла, такой атом неустойчив: эл-ны, двигаясь по круговым (эллиптическим) орбитам, испытывают ускорение, а следовательно, должны непрерывно излучать эл.-магн. волны, терять энергию и, постепенно приближаясь к ядру, за время =10-8 с упасть на ядро. Планетарная модель атома в рамках классич. Ф. приводила к неустойчивости атомов, а их линейчатые спектры оставались необъяснимыми. Для решения этой проблемы Бор постулировал существование в атомах стационарных состояний, находясь в к-рых эл-н не излучает. При переходе из одного такого состояния в другое он может испускать или поглощать энергию. Дискретность энергии атома была подтверждена экспериментально (Франка — Герца опыт, 913—14). Бор построил для атома водорода количеств. теорию спектров, согласующуюся с опытом.
Представление о кристалле как о совокупности атомов, упорядоченно расположенных в пр-ве и удерживаемых в положении равновесия силами вз-ствия, окончательно сформировалось в нач. 20 в. В 1890—91 Е. С. Фёдоров заложил основы теор. кристаллографии. В 1912 нем. физик М. Лауэ с сотрудниками открыл дифракцию рентг. лучей на кристаллах. На основе этого открытия был разработан метод эксперим. определения расположения атомов в кристалле и измерения межатомных расстояний, что положило начало рентгеновскому структурному анализу (Г. В. Вульф и англ. физики У. Л. Брэгг и У. Г. Брэгг). В 1907—14 была разработана динамич. теория крист. решёток, уже существенно учитывающая квант. представления. В 1907 Эйнштейн на модели кристалла как совокупности квант. гармонич. осцилляторов одинаковой частоты объяснил наблюдаемое падение теплоёмкости тв. тел при понижении темп-ры. Динамич. теория крист. решётки как совокупности гармонич. осцилляторов разл. частот была построена голл. физиком П. Дебаем (1912), нем. физиком М. Борном и амер. учёным Т. Карманом (1913), австр. физиком Э. Шрёдингером (1914) в форме, близкой к современной. Новый этап развития Ф. тв. тела начался после создания квант. механики.
Созданный Бором первый вариант квант. теории атома был внутренне противоречивым: используя для описания движения эл-нов законы механики Ньютона, Бор в то же время накладывал на возможные движения эл-нов квант. ограничения, чуждые классич. механике. Достоверно установленная дискретность действия и её количеств. мера постоянная Планка h — универсальная мировая постоянная, играющая роль естеств. масштаба явлений природы, требовали радикальной перестройки механики и электродинамики. Классич. законы оказались справедливыми лишь при рассмотрении тел достаточно большой массы, для к-рых величина действия велика по сравнению с h и дискретностью действия можно пренебречь.
В 20-е гг. 20 в. была создана квант., или волновая, механика — последовательная, логически завершённая нерелятивистская теория движения микрочастиц, к-рая позволила также объяснить мн. св-ва макроскопич. тел и происходящие в них явления. В основу её легли идея квантования Планка — Эйнштейна — Бора и выдвинутая в 1923 франц. физиком Л. де Бройлем гипотеза о двойственной корпускулярно-волновой природе любых видов материи. В 1927 впервые была обнаружена дифракция эл-нов (а позднее и др. микрочастиц, включая молекулы), экспериментально подтвердившая наличие у них волновых св-в. В 1926 Шрёдингер, пытаясь получить дискр. значения энергии атома из ур-ния волн. типа, сформулировал осн. ур-ние квант. механики, назв. его именем. В. Гейзенберг и Борн (Германия, 1925) построили квант. механику в др. матем. форме — т. н. матричную механику. Состояние микрообъекта в квант. механике характеризуется волновой ф-цией, эволюция к-рой определяется ур-нием Шрёдингера. Волновая ф-ция имеет статистич. смысл (Борн, 1926): квадрат её модуля есть плотность вероятности обнаружения ч-цы в данный момент времени в определ. точке пр-ва.
В 1925 амер. физики Дж. Ю. Уленбек и С. А. Гаудсмит на основании спектроскопич. данных открыли существование у эл-на собств. момента кол-ва движения — спина (а следовательно, и связанного с ним спинового магн. момента). Швейц. физик В. Паули записал ур-ние движения нерелятивистского эл-на во внеш. эл. магн. поле с учётом вз-ствия спинового магн. момента эл-на с магн. полем. В 1925 он же сформулировал т. н. принцип запрета (Паули принцип), согласно к-рому в одном квант. состоянии не может находиться более одного эл-на. Этот принцип сыграл важную роль в построении квант. теории систем мн. одинаковых ч-ц, в частности объяснил закономерности заполнения эл-нами оболочек и слоев в многоэлектронных атомах и т. о. дал теор. объяснение периодич. системе элементов Менделеева.
В 1928 англ. физик П. Дирак получил квант. релятив. ур-ние движения эл-на (Дирака уравнение), из к-рого естественно вытекало наличие у эл-на спина. На основании этого ур-ния Дирак в 1931 предсказал существование позитрона — первой античастицы, открытой в 1932 амер. физиком К. Д. Андерсоном в косм. лучах (антипротон и антинейтрон были экспериментально открыты соответственно в 1955 и 1956).
Параллельно с квант. механикой развивалась квант. статистика — квант. теория поведения физ. систем, состоящих из огромного числа микрочастиц. В 1924 инд. физик Ш. Бозе, применив принцип квант. статистики к фотонам (их спин равен 1), вывел ф-лу Планка для распределения энергии в спектре равновесного излучения, а Эйнштейн — ф-лу распределения энергии для идеального газа молекул (Бозе — Эйнштейна статистика). В 1926 Дирак и итал. физик Э. Ферми показали, что совокупность эл-нов (и др. одинаковых ч-ц со спином 1/2), для к-рых справедлив принцип Паули, подчиняется др. статистич. законам (Ферми — Дирака статистике). В 1940 Паули теоретически установил связь спина со статистикой. Квант. статистика сыграла важную роль в развитии Ф. конденсированных сред и в первую очередь Ф. тв. тела. В 1929 И. Е. Тамм предложил рассматривать тепловые колебания атомов кристалла как совокупность квазичастиц — фононов. Такой подход позволил объяснить, в частности, спад теплоёмкости металлов (= Т3) с понижением темп-ры Т в области низких темп-р, а также показал, что осн. причина электрич. сопротивления металлов — рассеяние эл-нов на фононах. Позднее были введены др. квазичастицы. Метод квазичастиц оказался весьма эффективным в Ф. конденсированных сред.
В 1928 нем. физик А. Зоммерфельд применил ф-цию распределения Ферми — Дирака для описания процессов переноса в металлах, что создало основу для дальнейшего развития квант. теории электро- и теплопроводности, термоэлектрич., гальваномагн. и др. кинетич. явлений в тв. телах. В работах Ф. Блоха и X. А. Бете в Германии и Л. Бриллюэна во Франции 1928—34) была разработана зонная теория энергетич. структуры кристаллов, к-рая дала естеств. объяснение различию в электрич. св-вах металлов и диэлектриков.
В 1928 Я. И. Френкель и Гейзенберг показали, что в основе ферромагнетизма лежит квант. обменное взаимодействие; в 1932—33 франц. физик Л. Неель и независимо Л. Д. Ландау предсказали антиферромагнетизм.
Открытия сверхпроводимости Камерлинг-Оннесом (1911) и сверхтекучести П. Л. Капицей (1938) стимулировали развитие новых методов в квант. статистике. Феноменологич. теория сверхтекучести была построена Ландау (1941); дальнейшим шагом явилась феноменологич. теория сверхпроводимости Ландау и В. Л. Гинзбурга (1950). В 50-х гг. были развиты новые методы расчёта в статистич. квант. теории многочастичных систем, одним из наиболее ярких достижений к-рых явилось создание Дж. Бардином, Л. Купером и Дж. Шриффером (США) и Н. Н. Боголюбовым микроскопич. теории сверхпроводимости.
На основе квант. теории вынужденного излучения, созданной Эйнштейном в 1917, в 50-х гг. возникла новая область радиофизики — квантовая электроника. Н. Г. Басовым и А. М. Прохоровым (и независимо Ч. Таунсом, США) осуществлены генерация и усиление эл.-магн. волн с помощью построенного ими мазера. В 60-х гг. был создан квант. генератор света — лазер.
Во 2-й четв. 20 в. происходило дальнейшее революц. преобразование Ф., связанное с познанием структуры ат. ядра и происходящих в нём процессов, а также с созданием Ф. элем. ч-ц. Открытию Резерфордом ат. ядра предшествовало открытие радиоактивности (А. Беккерель, П. и М. Кюри, Франция). В 1903 Резерфорд и Ф. Содди (Великобритания) объяснили радиоактивность как самопроизвольное превращение элементов, сопровождающееся излучением заряж. ч-ц. В 1919 Резерфорд, продолжая опыты по рассеянию альфа-частиц, добился превращения ядер азота в ядра кислорода. Открытие нейтрона в 1932 англ. физиком Дж. Чедвиком привели к созданию совр. протонно-нейтронной модели ядра (Д. Д. Иваненко, Гейзенберг). В 1934 франц. физики И. и Ф. Жолио-Кюри открыли искусств. радиоактивность.
Создание ускорителей заряженных ч-ц позволило изучать разл. яд. реакции. Важнейшим результатом этого этапа явилось открытие деления ат. ядра. В 1939—45 была впервые освобождена яд. энергия с помощью цепной реакции деления 235U. Впервые яд. энергия в мирных целях была использована в СССР. В 1954 в СССР была построена первая ат. электростанция (г. Обнинск). В 1952 была осуществлена реакция термоядерного синтеза (термоядерный взрыв). Одновременно с Ф. ат. ядра с 30-х гг. 20 в. начала быстро развиваться Ф. элем. ч-ц. Первые большие успехи в этой области были связаны с исследованием косм. лучей. Были открыты мюоны, p-мезоны, К-мезоны, первые гипероны. После создания ускорителей заряж. ч-ц на высокие энергии началось планомерное изучение элем. ч-ц, их св-в и вз-ствий. Было экспериментально доказано существование двух типов нейтрино и открыто много новых элем. ч-ц, в т. ч. крайне нестабильные ч-цы — резонансы. Обнаружена универсальная взаимопревращаемость элем. ч-ц.
Успехи теоретической и экспериментальной физики
Квантовая теория поля (КТП) — закономерный этап в развитии физ. теории — распространила квант. принципы на системы с бесконечным числом степеней свободы. Первоначально КТП была построена применительно к вз-ствию эл-нов, позитронов и фотонов (квантовая электродинамика, 1929). Вз-ствие между заряж. ч-цами, согласно этой теории, осуществляется путём обмена фотонами. Несмотря на то, что все выводы теории находятся в полном согласии с опытом, она встретила ряд трудностей. Так, теор. значения масс и зарядов ч-ц получаются бесконечно большими. Чтобы избежать противоречий, используют технику перенормировок, заключающуюся в том, что бесконечно большие в теории значения масс и зарядов ч-ц заменяются их наблюдаемыми значениями.
Идеи, положенные в основу квант. электродинамики, были использованы для описания процессов b-распада радиоактивных ат. ядер с помощью нового типа вз-ствия, назв. слабым взаимодействием.
Дальнейшим плодотворным применением идей КТП явилась гипотеза о том, что вз-ствие между нуклонами (протонами и нейтронами) возникает вследствие обмена мезонами. Короткодействующий хар-р яд. сил объясняется наличием у мезонов сравнительно большой массы покоя. Мезоны с предсказанными св-вами (пи-мезоны) были обнаружены в 1947. Вз-ствие их с нуклонами оказалось частным случаем сильных взаимодействий. Трудности сильных вз-ствий связаны с тем, что из-за большой константы связи приближённые методы теории возмущений оказываются здесь неприменимыми.
В кон. 60-х гг. была построена перенормируемая теория слабых вз-ствий. Успех был достигнут на основе т. н. калибровочных теорий. Создана объединённая модель слабых и эл.-магн. вз-ствий, согласно к-рой, наряду с фотоном — переносчиком эл.-магн. вз-ствий, должны существовать переносчики слабых вз-ствий — промежуточные векторные бозоны с массами в неск. десятков протонных масс. Наряду с заряженными (W+ и W-) бозонами должны существовать и нейтральные (Z°). В 1973 впервые экспериментально наблюдались процессы, к-рые можно объяснить существованием нейтральных бозонов (нейтральные токи), а в 1983 все эти бозоны были экспериментально обнаружены.
Большие успехи достигнуты в систематике сильно взаимодействующих ч-ц (адронов), позволившие предсказать существование неск. элем. ч-ц, открытых позднее экспериментально. Систематику адронов можно сделать наглядной, если предположить, что все адроны «построены» из небольшого числа (в первоначальном варианте из трёх) фундам. ч-ц — кварков с дробными электрич. зарядами и соответствующих антикварков. Открытие в 1975—76 нового класса ч-ц (J/y-мезонов) потребовало введения ещё одного кварка. Сделаны попытки построения теории сильных вз-ствий с учётом новых эксперим. данных (см. КВАНТОВАЯ ХРОМОДИНАМИКА).
Существ. черта совр. эксперим. Ф.— неизмеримо возросшая роль измерит. и вычислит. техники. Совр. эксперим. исследования в области ядра и элем. ч-ц, радиоастрономии, квант. электроники и Ф. тв. тела обычно ведутся на больших установках и требуют значительных материальных затрат. Огромную роль в развитии яд. Ф. и Ф. элем. ч-ц сыграли разработка методов наблюдения и регистрации отд. актов превращений элем. ч-ц и создание ускорителей элем. ч-ц, положившее начало развитию Ф. высоких энергий.
Подлинная революция в эксперим. исследовании вз-ствий элем. ч-ц связана с применением ЭВМ для обработки информации, получаемой от регистрирующих устройств. Это позволило фиксировать крайне редкие процессы и анализировать десятки тысяч фотографий треков элем. ч-ц.
Развитие радиофизики получило новое направление после создания в 1939—45 радиолокац. устройств. Были сооружены гигантские радиотелескопы, улавливающие излучение косм. тел с ничтожно малой спектральной плотностью потока энергии (до =10-2 эрг•см-2с-2 Гц-1), открыты с их помощью радиозвёзды и радиогалактики с мощным радиоизлучением, а в 1963 — наиболее удалённые от нас квазизвёздные объекты с большой светимостью — квазары. Исследование радиоизлучения небесных тел помогло установить источники первичных косм. лучей (протонов, более тяжёлых ядер и эл-нов). Ими оказались вспышки сверхновых звёзд. Было открыто реликтовое излучение, существование к-рого вытекало из модели горячей Вселенной. В 1967 открыты пульсары — быстро вращающиеся нейтронные звёзды. Пульсары создают направленное излучение в радио-, видимом и рентг. диапазонах. Интенсивность этого излучения периодически меняется за доли секунды из-за вращения звёзд.
Развитие традиц. направлений Ф. тв. тела привело к неожиданным открытиям новых физ. явлений и материалов с существенно новыми св-вами.
Успехи Ф. полупроводников совершили переворот в технике и радиотехнике. С заменой электровакуумных ламп полупроводниковыми приборами повысилась надёжность радиотехн. устройств и ЭВМ, существенно уменьшилась потребляемая ими мощность. Появились интегральные схемы, сочетающие на одном небольшом (площадью в десятки мм2) кристалле тысячи и более электронных элементов. Небольшие ЭВМ изготовляются на одном кристалле.
Большое значение как для самой науки, так и для практич. применений имеют результаты, полученные при исследовании в-ва в экстремальных условиях: при очень низких или очень высоких темп-рах, сверхвысоких давлениях или глубоком вакууме, сверхсильных магн. полях и т. д.
Основные нерешённые проблемы физики
Физика элементарных частиц. Наиболее фундам. проблемой Ф. было и остаётся исследование материи на уровне элем. ч-ц. Ещё далеко не все положения новых теорий получили прямое эксперим. подтверждение. Остаётся нерешённым вопрос о возможности существования кварков и мюонов (ч-ц, осуществляющих связь между кварками) в свободном состоянии.
Не удалось достигнуть б. или м. завершённого теоретич. обобщения обширного эксперим. материала с единой точки зрения. Не решена задача о теор. определении спектра масс элем. ч-ц. Неясно, существует ли верхняя граница для масс кварков и др. фундам. ч-ц. Не создана непротиворечивая теория вз-ствия элем. ч-ц, к-рая не приводила бы к бесконечным значениям масс и др. физ. величин. Наконец, не решена задача построения квант. теории тяготения. Лишь наметилось построение теории, объединяющей четыре фундам. вз-ствия (суперобъединение) .
Астрофизика. Развитие Ф. элем. ч-ц и ат. ядра позволило приблизиться к пониманию таких сложных проблем, как эволюция Вселенной на ранних стадиях её развития, эволюция звёзд и образования хим. элементов. Однако, несмотря на огромные достижения, перед совр. астрофизикой стоят нерешённые проблемы. Остаётся неясным, каково состояние материи при огромных плотностях и давлениях внутри нейтронных звёзд и «чёрных дыр». Не выяснены до конца природа квазаров и радиогалактик, причины вспышек сверхновых звёзд и появления всплесков g-излучения. Непонятно, почему число регистрируемых нейтрино, испускаемых Солнцем при термоядерных реакциях, меньше предсказываемого теорией. Не выявлен полностью механизм ускорения заряж. ч-ц (косм. лучей) при вспышках сверхновых звёзд и механизм эл.-магн. излучения пульсаров и т. д. Наконец, положено лишь начало решению проблемы эволюции Вселенной в целом.
Физика ядра. После создания протонно-нейтронной модели ядра был достигнут большой прогресс в понимании структуры ат. ядер, построены разл. приближённые модели ядра. Однако последоват. теории ат. ядра, позволяющей, в частности, рассчитать энергию связи нуклонов в ядре и уровни энергии ядра, пока нет. Успех в этом направлении может быть достигнут лишь после построения теории сильных вз-ствий. Эксперим. исследование вз-ствий нуклонов в ядре — ядерных сил — сопряжено с очень большими трудностями из-за предельно сложного хар-ра этих сил. Они зависят от расстояния между нуклонами, от скоростей нуклонов и ориентации их спинов.
Значит. интерес представляет возможность эксперим. обнаружения долгоживущих элементов с ат. номерами ок. 114 и 126 (т. н. островов стабильности), к-рые предсказываются теорией.
Одна из важнейших задач, к-рую предстоит решить,— проблема управляемого термоядерною синтеза (УТС), широко ведутся эксперим. и теор. исследования по созданию горячей дейтерий-тритиевой плазмы, необходимой для термоядерной реакции. Установки типа «токамак», впервые разработанные в СССР, являются, по-видимому, самыми перспективными в этом отношении. Разрабатываются и др. возможности решения проблемы УТС; в частности, для нагрева крупинок из смеси дейтерия с тритием можно использовать лазерное излучение, электронные и ионные пучки, получаемые в мощных импульсных ускорителях.
Квантовая электроника. Излучение квант. генераторов уникально по своим св-вам. Оно когерентно и может достигать в узком спектр. интервале огромной мощности: 1012—1013 Вт, причём расходимость светового пучка составляет всего ок. 10-4 рад. Напряжённость электрич. поля излучения лазера может превышать напряжённость внутриатомного поля. Создание лазеров вызвало появление и быстрое развитие нового раздела — нелинейной оптики. В сильном лазерном излучении становятся существенными нелинейные эффекты вз-ствия эл.-магн. волны со средой. Эти эффекты: перестройка частоты излучения, самофокусировка пучка и др.— представляют большой теор. и практич. интерес.
Почти строгая монохроматичность лазерного излучения позволила получать с помощью интерференции волн объёмное изображение объектов (голограммы). Лазерное излучение применяют для разделения изотопов, для испарения и сварки металлов в вакууме, в медицине и т. д. Ведётся поиск возможностей применения лазеров для нагрева в-ва до термоядерных темп-р, осуществления связи в космосе и т. д.
Гл. проблемы, к-рые предстоит решить,— это дальнейшее повышение мощности и расширение диапазона длин волн лазерного луча с плавной перестройкой по частоте. Ведутся поисковые работы по созданию рентг. и гамма-лазеров.
Физика твёрдого тела. Ф. тв. тела принадлежит ведущая роль в исследовании возможностей получения материалов с экстремальными св-вами в отношении механич. прочности, теплостойкости, электрич., магн. и оптич. хар-к.
С 70-х гг. 20 в. ведутся активные поиски нефононных механизмов сверхпроводимости. Решение этой задачи, возможно, позволило бы создать высокотемпературные сверхпроводники, что, в частности, решило бы проблему передачи электроэнергии на большие расстояния практически без потерь. Разрабатываются принципиально новые физ. методы получения более надёжных и миниатюрных полупроводниковых устройств. методы получения более высоких давлений, сверхнизких темп-р и т. п. Большое значение имеет изучение Ф. полимеров с их необычными механич. и термодинамич. св-вами, в частности биополимеров.
Физика плазмы. Важность изучения плазмы связана с двумя обстоятельствами. Во-первых, в плазменном состоянии находится подавляющая часть в-ва Вселенной. Во-вторых, именно в высокотемпературной плазме имеется возможность осуществления управляемого термоядерного синтеза.
Осн. ур-ния, описывающие плазму, известны, однако процессы в плазме столь сложны, что предсказать её поведение в разл. условиях весьма трудно. Гл. проблема, стоящая перед Ф. плазмы,— разработка эффективных методов её разогрева до темп-ры =109 К и удержание её в этом состоянии в течение времени, достаточного для протекания термоядерной реакции в большей части рабочего объёма. Решение проблемы устойчивости плазмы играет важную роль также в обеспечении работы ускорителей на встречных пучках и в разработке т. н. коллективных методов ускорения ч-ц. Исследование эл.-магн. и корпускулярного излучения плазмы имеет решающее значение для объяснения ускорения заряж. ч-ц при вспышках сверхновых звёзд, излучения пульсаров и др.
Разумеется, проблемы совр. Ф. не сводятся только к перечисленным; свои задачи имеются во всех разделах Ф., и общее число их столь велико, что они не могут быть здесь приведены.

Физический энциклопедический словарь. — М.: Советская энциклопедия..1983.


Синонимы:
агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофизика, морда, мордализация, мордасово, мордасы, мордень, мордоплясия, мордофиля, мордуленция, моська, мурло, оптика, петрофизика, радиофизика, рожа, рыло, ряха, ряшка, свойство, сусалы, теорфизика, термодинамика, физиомордия, физиономия, физия, физподготовка, фотография, харьковская область, харя, хрюкало, электрогидродинамика, электродинамика, электрофизика


Смотреть больше слов в «Физической энциклопедии»

ФИЗИКА. →← ФИДЕР

Смотреть что такое ФИЗИКА в других словарях:

ФИЗИКА

1) Ф. и ее задачи. — 2) Методы Ф. — 3) Гипотезы и теории. — 4) Роль механики и математики в Ф. — 5) Основные гипотезы Ф.; вещество и его строение. — 6)... смотреть

ФИЗИКА

        I. Предмет и структура физики          Ф. – наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства... смотреть

ФИЗИКА

физика 1. ж. 1) Научная дисциплина, изучающая наиболее общие свойства материального мира, свойства и строение материи, формы ее движения и изменения. 2) Учебный предмет, содержащий теоретические основы данной науки. 3) разг. Учебник, излагающий содержание данного учебного предмета. 2. ж. разг.-сниж. То же, что: физиономия (1).<br><br><br>... смотреть

ФИЗИКА

физика ж.physics

ФИЗИКА

физика личность, мордоплясия, сусалы, мордализация, мордофиля, харьковская область, мордасово, мордень, ряшка, рыло, физия, морда, мордуленция, лицо, мурло, рожа, харя, физиономия, фотография, хрюкало, моська, ряха, физиомордия, мордасы, свойство Словарь русских синонимов. физика см. лицо 1 Словарь синонимов русского языка. Практический справочник. — М.: Русский язык.З. Е. Александрова.2011. физика сущ., кол-во синонимов: 55 • агрофизика (2) • акустика (12) • гидродинамика (4) • квантовая механика (2) • кванты (2) • кристаллооптика (1) • лицо (135) • личность (37) • магнитогидродинамика (1) • механика (10) • микрофизика (1) • молекулярка (2) • молекулярная физика (2) • морда (76) • мордализация (24) • мордасово (23) • мордасы (24) • мордень (23) • мордоплясия (23) • мордофиля (23) • мордуленция (23) • моська (29) • мурло (43) • оптика (12) • опты (1) • петрофизика (2) • пневматика (1) • психофизика (1) • радиофизика (1) • рожа (61) • рыло (44) • ряха (29) • ряшка (24) • свойство (32) • статистическая физика (2) • статы (2) • сусалы (23) • теоретическая физика (3) • теорфиз (3) • теорфизика (3) • термодинамика (3) • физиомордия (24) • физиономия (41) • физия (25) • физподготовка (2) • фотография (60) • харьковская область (9) • харя (37) • химфизика (1) • хрюкало (29) • электрогидродинамика (1) • электродинамика (2) • электрофизика (1) • ядерка (6) • ядерная физика (2) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофизика, морда, мордализация, мордасово, мордасы, мордень, мордоплясия, мордофиля, мордуленция, моська, мурло, оптика, петрофизика, радиофизика, рожа, рыло, ряха, ряшка, свойство, сусалы, теорфизика, термодинамика, физиомордия, физиономия, физия, физподготовка, фотография, харьковская область, харя, хрюкало, электрогидродинамика, электродинамика, электрофизика... смотреть

ФИЗИКА

ФИЗИКА. Содержание:I. Предмет и структура физикиII. Основные этапы развития физикиIII. Фундаментальные теории физикиIV. Современная экспериментальная... смотреть

ФИЗИКА

Физика 1) Ф. и ее задачи. — 2) Методы Ф. — 3) Гипотезы и теории. — 4) Роль механики и математики в Ф. — 5) Основные гипотезы Ф.; вещество и его строен... смотреть

ФИЗИКА

ФИЗИКА (греч. τὰ φυσικά – наука о природе, от φύσις – природа) – комплекс науч. дисциплин, изучающих общие свойства структуры, взаимодействия и движ... смотреть

ФИЗИКА

греч. ?? ?????? – наука о природе, от ????? – природа) – комплекс науч. дисциплин, изучающих общие свойства структуры, взаимодействия и движения материи. В соответствии с этими задачами совр. Ф. весьма условно можно подразделить на три больших области – структурную Ф., физику взаимодействий (Ф. поля) и Ф. д в и ж е н и я (механику). Науки, образующие структурную Ф., довольно четко различаются по изучаемым объектам, к-рыми могут быть как элементы структуры вещества (элементарные частицы, атомы, молекулы), так и более сложные образования (плазма, кристаллы, жидкости, звезды). По мере открытия новых уровней структуры и состояний вещества объектная область структурной Ф. расширяется. Сейчас она охватывает все известные уровни строения вещества – от элементарных частиц до галактик. Ф. взаимодействий, основанная на представлении о поле как материальном носителе взаимодействия, делится на четыре отдела, соответственно четырем известным видам взаимодействий (сильное, электромагнитное, слабое, гравитационное). Ф. движения (механика) включает в себя классическую (ньютонову) механику, релятивистскую (эйнштейновскую) механику, нерелятивистскую квантовую механику и релятивистскую квантовую механику. Особое место в совр. системе физич. наук занимает с т а т и с т и ч. Ф., представляющая собой теорию поведения ансамблей – совокупностей большого количества частиц (см. Статистические и динамические закономерности). Будучи основана на определ. предположениях о структуре ансамблей и характере взаимодействия и движения частиц ансамбля, статистич. Ф. сочетает в себе черты всех трех осн. областей Ф. Ее методы применяются во всех разделах Ф. При решении конкретных физич. задач вопросы, связанные с выяснением структуры, взаимодействия и движения, тесно переплетаются. Так, Ф. атома, будучи разделом структурной Ф., необходимо включает в себя конкретные представления о характере движения и взаимодействия образующих атом частиц – ядра и электронов, т.е. может рассматриваться с т. зр. и Ф. взаимодействий и Ф. движения. Тем не менее приведенное подразделение комплекса физич. наук имеет определ. смысл, ибо выявляет те осн. категории, к-рые играли роль общих методологич. средств построения физич. картины мира на всех этапах истории Ф. Изложенная т. зр. на предмет Ф. не является единственной. Часто Ф. определяют как науку о таких формах материи ("первичных", "элементарных"), к-рые входят в состав любых материальных систем, о структуре этих форм, их взаимодействии и движении. В этом случае структуру самой Ф. определяют, исходя из многообразия исследуемых в ней форм материи и характерных для них видов движения (Ф. атома, Ф. твердого тела, Ф. тяготения, Ф. колебаний и т.д.), и специально выделяют такие ее разделы, к-рые охватывают вое многообразие явлений, происходящих при нек-рых определ. условиях, – Ф. низких температур, Ф. сверхвысоких давлений и т.п. (подробнее о др. подходах к определению предмета Ф. – см. И. В. Кузнецов, К вопросу об определении предмета совр. Ф., в кн.: Нек-рые философские вопросы естествознания, М.. 1957; С. И. Вавилов, Физика, Собр. соч., т. 3, М., 1956, с. 148–64; А. Ф. Иоффе, Физика, БСЭ, 2 изд., т. 45, М., 1956; Физика, в кн.: Физический энциклопедический словарь, т. 5, М., 1966). Обладая наиболее развитыми математическими и экспериментальными средствами исследования, Ф. занимает ведущее место среди естеств. наук. Ее представления, результаты и методы используются всеми без исключения естеств. науками. Это приводит к образованию многочисленных "стыковых" дисциплин (геофизика, физич. химия, химич. Ф., астрофизика, биофизика и т.п.). Сама же Ф. вырабатывает свои средства с помощью философии (методологич. средства), математики (матем. аппарат физич. теорий) и техники (экспериментальные средства), оказывая обратное влияние на развитие этих областей знания. Уже в глубокой древности возникли зачатки знаний, впоследствии вошедшие в состав Ф. и связанные с простейшими представлениями о длине, тяжести, движении, равновесии и т.п. В недрах греч. натурфилософии сформировались зародыши всех трех частей Ф., однако сначала на первом плане стояла Ф. движения, понимаемого в самом широком смысле – как изменение вообще. Взаимодействие отд. вещей трактовалось наивно-антропоцентрически (напр., мнение об одушевленности магнита у Фалеса). Подробное рассмотрение проблем, связанных с анализом движения как перемещения в пространстве, впервые было осуществлено в знаменитых апориях Зенона Элейского. В связи с обсуждением структуры первоначал зарождаются и конкурируют концепции непрерывной делимости до бесконечности (Анаксагор) и дискретности, существования неделимых элементов (атомисты). В этих концепциях закладывается понятийный базис будущей структурной ?. В связи с задачами анализа простейшей формы движения (изменения по месту) возникают попытки уточнения понятий "движение", "покой", "находиться в...", "место", "время", "движение", "пустота". Результаты, полученные на этом пути, образуют основу понятийного аппарата будущей Ф. движения – механики. При сохранении антропоморфных тенденций у атомистов четко намечается понимание взаимодействия как непосредств. столкновения осн. первоначал – атомов. Полученные умозрит. путем достижения греч. натурфилософии вплоть до 16 в. служили единств. средствами построения картины мира в науке. Матем. средства (в основном геометрические) служили при этом лишь для описания наблюдений и иллюстрации словесных рассуждений. Эксперимент существовал лишь в виде отд. зачатков (эмпирики). Превращение Ф. в самостоят. науку обычно связывается с именем Галилея. Осн. задачей Ф. он считал эмпирич. установление количеств, связей между характеристиками явлений и выражение этих связей в матем. форме с целью дальнейшего исследования их матем. средствами, в роли к-рых выступали геометрич. чертежи и арифметич. учение о пропорциях. Использование этих средств регулировалось сформулированными им осн. принципами и законами (принцип относительности, принцип независимости действия сил, закон равноускоренного движения и др.). Достижения Галилея и его современников в области Ф. движения (Кеплер, Декарт, Гюйгенс) подготовили почву для работ Ньютона, приступившего к оформлению целостного предмета механики в систему понятий. Продолжая методологич. ориентацию на принципы, а не на скрытые причины (hypothesis non fingo), Ньютон сформулировал три закона (аксиомы) движения и вывел из них ряд следствий, трактовавшихся прежде как самостоят. законы. Ньютоновские "Математические начала натуральной философии" подвели итоги работы по установлению смысла и количеств. характеристик осн. понятий механики – "пространство", "время", "масса", "количество движения", "сила". Для решения задач, связанных с движением, Ньютон (вместе с Лейбницем) создал дифференциальное и интегральное исчисления, одно из самых мощных матем. средств Ф. Начиная с Ньютона и вплоть до конца 19 в. механика трактуется как общее учение о движении (понимаемом как перемещение в пространстве) и становится магистральной линией развития Ф. С ее помощью строится Ф. взаимодействий, где конкурируют концепции близкодействия и дальнодействия. Потребности концепции близкодействия вызвали к новой жизни антич. представления об эфире (Декарт). Успехи небесной механики, основанные на ньютоновском законе всемирного тяготения, способствовали победе концепции дальнодействия (согласно к-рой гравитац. взаимодействие между частицами вещества осуществляется мгновенно и непосредственно через пустоту с помощью дальнодействующих сил). По образцу теории тяготения строилась и Ф. взаимодействий в области электричества и магнетизма (Кулон). Успехи гидродинамики (Бернулли, Эйлер) способствовали внедрению в Ф. идей непрерывности на основе представлений о невесомых жидкостях (флюидах). Как флюиды трактовались электричество, магнетизм и теплота. Юнг и Френель развивали теорию света как волн в непрерывном эфире, также рассматривавшемся как флюид. Начиная с Дальтона, введшего понятие атомного веса, атомистика отделяется от философии, а химия обретает статус фундаментальной науки. Представления об атомах и молекулах, перенесенные из химии в Ф., постепенно вытеснили невесомые флюиды. Юнг (1816) дал первую количеств. оценку размеров молекулы. Усилиями Бернулли, Клаузиуса, Максвелла была построена (в опоре на статистич. представления) кинетич. теория газов, дальнейшее развитие к-рой Больцманом и Гиббсом позволило объяснить тепловые явления без помощи теплорода. С Фарадея начинается интенсивное развитие Ф. электричества и магнетизма на основе идеи близкодействия. Переход от электростатики к электродинамике (Фарадей, Эрстед, Ампер) позволил объединить электрические и магнитные явления. Фарадеевские представления о поле как особом состоянии эфира были оформлены Максвеллом в строгую матем. теорию, к-рая с единой т. зр. трактовала электрические, магнитные и оптич. явления. К концу 19 в. Ф. представляла собой развитый комплекс дисциплин, объединенных идеей сохранения и превращения энергии (см. Сохранения принципы). Мн. ученым Ф. казалась принципиально завершенной наукой. Филос. фоном ее было механистич. мировоззрение, представлявшее собой синтез атомизма с доктриной лапласовского детерминизма. Вероятностные представления статистич. Ф. трактовались как всецело обусловленные незнанием точных значений начальных импульсов и координат частиц, составляющих ансамбль. Электромагнитные явления многими еще не считались автономными – усилия большинства ученых были направлены на сведение их к механич. явлениям путем построения хитроумных моделей эфира. Внутр. противоречия, возникшие при теоретич. объяснении результатов нек-рых опытов в рамках классич. картины мира, привели к возникновению новых, неклассич. направлений релятивистской и квантовой Ф. Релятивистская Ф., возникшая из необходимости объяснить отрицат. результат опыта Майкельсона (спец. относительности теория) и факта равенства инертной и тяжелой массы (общая теория относительности), стала Ф. быстрых движений и сильных гравитац. полей. Квантовая теория, появившаяся в связи с парадоксами объяснения наблюдаемого распределения энергии в спектре излучения абсолютно черного тела (Планк, 1900) явлениями фотоэффекта (Эйнштейн, 1905) и противоречиями планетарной модели атома (Бор, 1913), стала общей теорией взаимодействия и движения микрообъектов. В связи с этим претерпела радикальные изменения вся физич. картина мира. В Ф. движения спец. теория относительности (Эйнштейн, 1905) сделала ненужным представление об эфире как абс. системе отсчета. Это дало возможность и в Ф. взаимодействий отказаться от эфира и приписать полю самостоят. существование. Сначала теоретически, а затем экспериментально и промышленно (ядерная энергетика) установленные связь массы и энергии (Е=mс2), а также зависимость массы движущегося тела от скорости его движения покончили с резким противопоставлением материи и движения, характерным для классич. Ф. Постулат о постоянстве скорости света во всех инерциальных системах отсчета и распространение принципа относительности на электромагнитные явления показали относительность количеств, определенности пространственных и врем. промежутков. Это привело к понятию единого четырехмерного пространственно-врем. континуума и ликвидировало разобщенность понятий пространства и времени, свойственную классич. механике. Общая теория относительности (Эйнштейн, 1916), интерпретировавшая поле тяготения как искривление пространства-времени, обусловленное наличием материи, перекинула еще один мост от материи и движения к взаимодействию. Создание в 20-х гг. 20 в. квантовой механики, основанной на представлении о дискретной природе действия (существование миним. кванта действия ?) (Бор, Борн, Гейзенберг, де Бройль, Шредингер, Паули и др.), привело к дальнейшему изменению представлений о движении и взаимодействии, сделав невозможным применение понятия траектории к анализу движения микрообъектов. Релятивистская квантовая механика (Дирак, Паули, Гейзенберг, В. А. Фок, Дайсон, Р. Фейнман, Ю. Швингер и др.), наряду с пространств.-врем. перемещением элементарных частиц, сохраняющим их тождественность и регулируемым законами сохранения энергии и импульса, стала рассматривать их взаимопревращения (см. Микрочастицы). Все эти, как и др. законы сохранения, являются в совр. Ф. следствиями общих свойств симметрии пространства-времени и взаимодействий. В области структурной Ф. квантовые представления привели к тому, что концепция абсолютно элементарных, неделимых единиц структуры – атомов, уступила место представлениям об относительности понятий элементарности и сложности, о чем в свое время говорил еще Ленин. Релятивистская квантовая теория поля, объединив в едином понятии квантованного поля понятия частицы и поля, преодолела резкое противопоставление пространств. дискретности вещества (взаимодействующих частиц) и пространств. непрерывности поля (переносчика взаимодействия), характерное для классич. Ф. и сохранившееся в нерелятивистской квантовой механике. Изменились и др. связи структурной Ф. с Ф. взаимодействий. В классич. Ф. (включая релятивистскую) результаты взаимодействия целиком определялись пространств.-врем. структурой взаимодействующих объектов (координатами и скоростями – для частиц, напряженностью или потенциалом в каждой точке пространства и законом изменения их во времени – для полей). Знание характеристик элементов структуры позволяло определить состояние системы в целом. Т.о., Ф. взаимодействий была логически вторичной по отношению к структурной Ф. В современной квантовой Ф. дело обстоит наоборот – на первый план выдвинулась Ф. взаимодействий и ответ на вопрос о строении микрообъектов определяется результатами взаимодействия данной микрочастицы с другими. В связи с этим существенно изменились требования к способу задания состояния микрообъектов в теории. Во-первых, волновая функция относится к системе в целом. Во-вторых, энергетически-импульсные характеристики микрообъектов (потенциальные характеристики их взаимодействия) в квантовой механике являются логически равноправными и, что особенно важно, независимыми по отношению к их пространств.-врем. характеристикам. Наиболее отчетливо логич. первичность взаимодействия по сравнению с пространств.-врем. структурой проявляется в Ф. элементарных частиц. Если в Ф. атома и атомного ядра характеристикам взаимодействия еще могут быть сопоставлены пространств.-врем. модели взаимодействующих объектов (типа боровских орбит, распределения плотности заряда в атомах, различных моделей ядра), дающие нек-рую пространств.-врем. картину механизма взаимодействия, то в Ф. элементарных частиц это можно сделать в гораздо меньшей степени. Элементы структуры атома (ядро и электроны) и атомного ядра (протоны и нейтроны) еще могут считаться существующими "в недрах" исходных частиц до взаимодействия, к-рое приводит лишь к перераспределению этих элементов. Элементарные частицы до взаимодействия могут рассматриваться состоящими из двух элементарных частиц лишь весьма условно. Это находит свое выражение в понятии "виртуальности" элементов структуры элементарных частиц: виртуальные частицы как элементы структуры реальных элементарных частиц характеризуют лишь возможные результаты порождения новых реальных элементарных частиц при взаимодействии исходных реальных частиц. Еще более виртуальными являются т.н. квазичастицы в Ф. полупроводников и Ф. твердого тела, позволяющие трактовать возбуждение состояния макротел как результат существования, движения и взаимодействия квазичастиц. Как и многие другие модельные представления, квазичастицы служат для теоретич. объяснения макроскопически наблюдаемых явлений в твердых и жидких телах. Т.о., совр. теория структуры элементарных частиц приобретает существенно динамич. характер. По сути дела, современная квантовая Ф., вскрыв ограниченность пространств.-врем. описания микромира на языке классич. понятий координаты и скорости, дала более глубокое его описание на языке ?-функции и ограничила свои задачи описанием и предсказанием всех возможных макроскопически наблюдаемых результатов взаимодействия. Эта черта совр. Ф., считающаяся мн. учеными временной, наиболее ярко проявляется в формализме s-матрицы, представляющем собой физич. воплощение кибернетич. идей "черного ящика". Совр. Ф. взаимодействий значительно расширила свою объектную область, включив в рассмотрение, наряду с гравитационными и электромагнитными, сильные (ядерные) и слабые (?-распадные) взаимодействия, проявляющиеся только в микромире. Факт наличия четырех существенно различных видов взаимодействий постоянно поддерживает зародившиеся еще в классич. Ф., но пока безуспешные стремления построить общую теорию поля. В статистич. Ф., куда также проникли квантовые идеи о движении и взаимодействии, оформляется в самостоят. ветвь статистич. Ф. процессов (физич. кинетика). Достижения Ф. в 20 в. значительно повлияли на конкретные представления о смысле таких филос. категорий, как материя, движение, пространство и время. К числу фундаментальных достижений совр. Ф., имеющих общефилос. значение, относится также установление принципа относительности свойств материальных объектов. Это связано с последоват. учетом в понятийном аппарате теории роли материального окружения объекта (в первую очередь измерит, прибора и системы отсчета) в деле определения этих свойств. Классич. Ф. считала свойства, обнаруживаемые при измерении, присущими объекту и только ему (принцип абсолютности свойств). Уже теория относительности вскрыла количеств. относительность таких свойств объектов, как длина, время жизни, масса, зависящих, как оказалось, не только от самого объекта, но и от системы отсчета. Отсюда следовало, что количеств, определенность свойств объекта должна быть отнесена не к нему "самому по себе", а к системе "объект+система отсчета", хотя носителем качеств. определенности свойств по-прежнему оставался сам объект. Квантовая теория пошла еще дальше в этом направлении, выдвинув идею дополнительности (см. Дополнительноcти принцип). Существование дополнит. свойств, не объяснимое с т. зр. принципа абсолютности свойств, получает естеств. объяснение с помощью принципа относительности свойств. С т. зр. последнего, термин "свойство объекта" следует рассматривать в плане "виртуальности" – как характеристику потенциальных возможностей объекта, к-рые реализуются только при наличии второго объекта, взаимодействующего с первым. С квантовой Ф. связано также гораздо более широкое понимание причинности, опирающееся на отказ от характерного для классич. Ф. предположения, что в основе статистич. закономерностей всегда лежат однозначно определенные динамич. закономерности. В концептуальных рамках релятивистской и квантовой теорий развитие Ф., для к-рого характерны все более последоват. отказ от применимости классич. представлений "в малом", все более абстрактная характеристика состояния, все меньшая наглядность, продолжается и в наст. время. Принципы и представления этих теорий служат фундаментом как для решения прикладных физико-технических и пром. задач (строительства ускорителей, реакторов, термоядерных установок и атомных электростанций), так и для формирования новых представлений о структуре, взаимодействии и движении при экстраполяции принципов на новые объектные области – в квантовой радиофизике, Ф. полупроводников, Ф. сверхпроводимости, Ф. плазмы, астрофизике и т.д. Задача синтеза релятивистских и квантовых принципов является одной из основных и до сих пор не решенных задач Ф. элементарных частиц, представляющей передний край современной теоретической и экспериментальной Ф. В области экспериментальной Ф. осн. проблемы состоят, с одной стороны, в осуществлении целенаправленных экспериментов по проверке гипотез о структуре, строении и взаимодействии элементарных частиц, выдвигаемых физиками-теоретиками. С др. стороны, ведется поиск технич. средств, к-рые позволили бы проверить справедливость квантовых и релятивистских принципов на новой объектной области, ранее не доступной экспериментальному изучению (эксперименты с частицами высоких энергий – встречные пучки, космич. лучи). В теоретич. Ф. осн. круг собственно физич. проблем связан с исследованием формальной структуры матем. аппарата, используемого в теории (попытки аксиоматизации теории поля, вопросы сходимости ряда в теории возмущений и т.п.). Осн. методами, используемыми в новейшей теоретич. Ф., являются теория поля, метод s-матрицы и теория групп. Они различаются как выбором матем. аппарата, так и предъявляемыми к нему требованиями. В теории поля, использующей для построения матем. моделей аппарат алгебры операторов в гильбертовом пространстве, упор делается на строгое матем. осмысливание теории, а не на детальное сравнение с опытом. В основе метода s-матрицы лежит матем. аппарат теории функций комплексного переменного. Оперирование матем. аппаратом производится без опоры на наглядные модельные представления, на основе аксиоматич. требований, предъявляемых к матем. характеристикам s-матрицы (аналитичность, унитарность и т.д.), связывающей состояния до и после взаимодействия. Этот метод в его совр. виде занимает промежуточное положение между случаем, когда создание строгой теории признается более важным (как в теории поля), нежели использование ограниченных и формальных методов (как в теории групп), и случаем, когда поиск ведется вне рамок к.-л. единой методич. концепции путем простого подбора тех или иных моделей с последующим отбрасыванием неудачных вариантов (как в ядерной Ф.). Методы теории групп, основанные на учете связи типа симметрии состояния физич. объектов с инвариантами групп преобразований, позволили построить ряд абстрактных теорий симметрии сильно взаимодействующих частиц (адронов) – теорию SU3-симметрии, SU6-симметрии и т.п. Эти теории не используют никаких модельных представлений и опираются только на отвлеченные свойства групп. Будучи основаны на глубоких матем. идеях, подобно теории поля, методы теории групп, в отличие от нее, покоятся на прочной экспериментальной основе. Однако, выделяя только те аспекты природы, к-рые удается понять в рамках абстрактной симметрии, эти методы не дают возможности осмыслить численные значения времени жизни частиц и характер их взаимодействий. Поэтому громадный объем экспериментальных фактов (в т.ч. все, относящиеся к легким частицам – лептонам) находится вне поля зрения этих методов. Все три упомянутых метода остаются слишком ограниченными, отрывочными и неопределенными и поэтому рассматриваются ведущими физиками как предварит. достижения на пути к более общей теории, способы построения к-рой пока не ясны. Методологич. проблемы новейшей Ф. так или иначе связаны с анализом роли матем. аппарата в построении физич. теорий. Это обусловлено существ, отличием характера использования математики в совр. Ф. В классич. Ф. теория обслуживала эксперимент, а матем. язык служил лишь рафинированным средством о п и с а н и я эмпирич. связей и о б ъ я с н е н и я их с помощью разного рода моделей (напр., как в случае отношения эмпирич. законов Бойля–Мариотта, Шарля и Гей-Люссака к распределению Максвелла, основанному на атомно-молекулярной модели строения вещества). Совр. Ф. отличается широким использованием математической гипотезы как метода исследования (хотя сам этот метод зародился уже в классич. Ф.), причем часто без опоры на модельные представления, руководствуясь почти исключительно матем. требованиями к характеру осн. уравнений. Это выдвигает теоретич. уровень исследования на первое место по сравнению с эмпирическим, за к-рым остаются только функции контроля – принципиальная проверка и количеств, уточнение результатов, полученных с помощью матем. гипотезы на теоретич. уровне. В случае успеха существование объектов или их характеристик, предположенное на теоретич. уровне, подтверждается эмпирически, что приводит к открытию новых частиц или эффектов. Именно таким путем были открыты в Ф. позитрон (первоначально предсказанный теоретически на основании интерпретации результатов решения уравнения Дирака), несохранение четности в слабых взаимодействиях (опыты By по проверке гипотезы Ли и Янга), ?–-мезон (на основании предсказания теории SU3-симметрии). Ряд объектов, возможность существования к-рых следует из нек-рых матем. гипотез, до сих пор экспериментально не обнаружены – гравитац. волны (их существование вытекает из интерпретации результатов определ. способа решения уравнений общей теории относительности), монополь Дирака (изолированный магнитный полюс, существующий согласно интерпретации одного из вариантов матем. оформления электродинамики), кварки (гипотетич. суперэлементарные частицы) и др. Методологич. тенденция, идущая от классич. Ф., предписывает искать для каждого матем. выражения, фигурирующего в теории, соответствующий ему фрагмент физич. реальности. Эта тенденция может быть названа онтологической, ибо в ней в качестве принципа интерпретации провозглашается своеобразный принцип параллелизма между матем. формой и физич. содержанием теории. Согласно этому принципу, матем. аппарат теории непосредственно отражает (изоморфно или гомоморфно) объекты, свойства и отношения реального мира как таковые, так что матем. символы являются знаками элементов реальности, а структура матем. выражений воспроизводит структуру реального мира физич. объектов и их взаимодействий. С этой методологич. тенденцией в совр. Ф. успешно конкурирует тенденция к эмпирич. интерпретации матем. аппарата физич. теории. Принцип такой интерпретации иногда называют "началом принципиальной наблюдаемости". При эмпирич. интерпретации матем. символы теории трактуются как обозначающие результаты реальных эмпирич. процедур, причем физич. смыслом обладают далеко не все из символов. Нек-рые из них, служащие промежуточным средством для вычислений, не получают никакой интерпретации и рассматриваются как вспомогательные. Последоват. приверженцы эмпирия, интерпретации единственно достаточным условием истинности физич. теории считают ее способность к предсказаниям, оправдывающимся на опыте, и не делают из факта успешности подобных предсказаний вывода о сходстве структуры матем. аппарата теории со структурой реальности. Наиболее последовательно принцип эмпирич. интерпретации осуществляется совр. Ф. в методе s-матрицы. Выражением борьбы тех же принципов интерпретации является полемика вокруг интерпретации квантовой механики (точнее, ее матем. аппарата). Так, ?-функция, задающая состояние микрообъектов, интерпретируется сторонниками онтологич. интерпретации (Д. Бом, Л. до Бройль, А. Яноши и др.) как отображение нек-рого объективно существующего волнового поля. Сторонники же эмпирич. интерпретации (копенгагенская школа и ее разновидности) считают ?-функцию лишь промежуточным средством расчета результатов реальных экспериментов. С проблемой интерпретации в совр. Ф. тесно связана проблема реальности – проблема принципов построения картины мира. Обычно эту картину строят на базе принципов онтологич. интерпретации – путем онтологизации матем. аппарата теории (именно так появились в совр. Ф. представления о двойственной корпускулярно- волновой природе микрообъектов, о кварках и т.п.). При этом изменение вида используемого в теории матем. аппарата влечет за собой изменение онтологич. представлений. Иногда онтологизируются не матем. выражения, а модельные представления, управляющие оперированием с этими выражениями (как, напр., в ядерной Ф.). Полученная подобным способом физич. картина мира считается образом реальности, лежащей на ненаблюдаемом уровне. Сторонники эмпирич. интерпретации склоняются к тому, чтобы употреблять термин "реальность" и конкретизировать его смысл только на эмпирич. уровне исследования, принципиально отказываясь придавать онтологич. смысл гипотезам о характере непосредственно не наблюдаемых объектов. Промежуточной является позиция М. Борна, считающего образами реальности инварианты, фигурирующие в матем. аппарате теории. Поиск "сумасшедших идей", столь актуальный в совр. Ф., с т. зр. проблемы реальности представляет собой проблему существенно новых принципов построения физич. картины мира, к-рые позволили бы придать теории элементарных частиц логич. замкнутость и полноту. Большинство ученых считает, что принципов квантовой механики и теории относительности недостаточно для осуществления этой цели. Однако отсутствие ощутимых успехов в преодолении этой недостаточности вынуждает при решении конкретных задач до сих пор ограничиваться лишь незначит, модификациями квантово-релятивистского концептуального аппарата, не затрагивающими его принципиальных основ. Лит.: Дюгем П., Физич. теория, ее цель и строение, пер. с франц., СПБ, 1910; Планк М., Физич. очерки, пер. с нем., М., [1925]; Гейзенберг В., Филос. проблемы атомной Ф., пер. [с англ.], М., 1953; его же, Ф. и философия, пер. с нем., М., 1963; Кудрявцев П. С, История Ф., [2 изд.], т. 1–2, М., 1956; Лауэ М., История Ф., пер. с нем., М., 1956; Нильс Бор и развитие физики. Сб. [ст.], М., 1958; Очерки развития осн. физич. идей. Сб. ст., М., 1959; Филос. вопросы совр. физики. Сб. ст., М., 1959; Бор Н., Атомная Ф. и человеч. познание, пер. с англ., М., 1961; Бройль Л. де, По тропам науки, пер. с франц., М., 1962; его же, Революция в Ф., пер. с франц., 2 изд., М., 1965; Теоретич. физика 20 века, М., 1962; Над чем думают физики, вып. 1–4, М., 1962–65; Развитие совр. Ф. Сб. ст., М., 1964; Борн ?., ?. в жизни моего поколения. Сб. ст., М., 1963; Филос. проблемы Ф. элементарных частиц, М., 1963; Спасский Б. И., История Ф., ч. 1–2, М., 1963–64; Эйнштейн ?., ?. и реальность. Сб. ст., пер. с нем. и англ., М., 1965; Ландау Л. Д., Лифшиц В. М., Теоретич. физика, 2 изд., т. 1–9, М., 1965; Фейнмановские лекции по Ф., [пер. с англ.], вып. 1–8, М., 1965–66; Кузнецов Б. Г., Развитие физич. идей от Галилея до Эйнштейна в свете совр. науки, 2 изд., М., 1966; Эйнштейн ?., Инфельд Л., Эволюция Ф., пер. с англ., 4 изд., [М.], 1966; Campbell N. R., Physics. The elements, Camb., 1920; Lenzen V. Г., The nature of physical theory, N. Y., 1931; Bridgman P. W., The nature of physical theory, Princeton, 1936; Planck M., The philosophy of physics, N. Y., [1936]; Stebbing L. S., Philosophy and the physicists, L., [1937]; Frank Ph., Between physics and philosophy, Camb., 1941; Destouches J. L., Principes foundamentaux de physique th?orique, P., [1942]; Lindsay R. В., Margenau H., Foundations of physics, [5 ed.], N. Y.–L., [1947]; Eddington ?., The philosophy of physical science, Camb., 1949; Margenau H., The nature of physical reality, N.Y., 1950; Destouches-F?vrier P., La structure des th?ories physiques, P., 1951; Weizs?cker C.F. von, Zum Weltbild der Physik, 6 Aufl., Stuttg., 1954. И. Алексеев, Ю. Румер. Новосибирск. ... смотреть

ФИЗИКА

ФИЗИКА(греч., от. physis - природа). Наука, имеющая своим предметом свойства тел и действия, которые они оказывают одно на другое, не изменяя своих сос... смотреть

ФИЗИКА

ФИЗИКА и, ж. physique, нем. Physik &LT; physike &LT; physis природа. 1. устар. Физическое строение и состояние организма. БАС-1. Большую часть времени... смотреть

ФИЗИКА

        (греч. наука о природе). Будучи по своему характеру более синтетич., нежели аналитич. наукой, Ф. др.-греч. и эллинистич. периодов являлась сост... смотреть

ФИЗИКА

    «ФИЗИКА» (Φυσικά), позднее название сочинения Аристотеля в 8 книгах, которое в греческих рукописях и у древних комментаторов называется «Лекции по ... смотреть

ФИЗИКА

от греч. physis,—природа) — наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира. Вследствие этого Ф. и ее законы лежат в основе всего естествознания. В древности слово “Ф.” обозначало всю совокупность сведений о природе. Впоследствии под Ф. стали понимать учение о закономерностях движения тел (механика), о причинах звуковых (акустика), тепловых, электрических, магнитных и оптических явлений. Классическая Ф. стремилась объяснить причины этих явлений на основе законов механики Ньютона. В 19 в. выяснилось, что Ф. имеет дело со специфическими закономерностями. Термодинамика изучает поведение больших множеств молекул, для к-рых характерен необратимый переход от менее вероятных состояний к более вероятным, в то время как собственно механические процессы не обладают подобной необратимостью. С др. стороны, в классической электродинамике выросло убеждение о несводимости законов возникновения и распространения электромагнитного поля к законам механики. Т. обр., в 19 в. Ф. начала эмансипироваться от механики. Вместе с тем механическая теория тепла показала взаимный переход механических процессов в тепловые, а учение об электричестве установило переходы механических процессов в электрические и обратно. В 19 в. было установлено, что механические, тепловые и электромагнитные процессы связаны взаимными переходами при сохранении количественной меры всех этих видов движения — энергии. Принцип сохранения энергии (Сохранения энергии закон) стал осн. принципом Ф. В конце 19 — нач. 20 в. было обнаружено мн. новых, ранее неизвестных физических явлений — возникновение и распространение радиосигналов, рентгеновских лучей, радиоактивность. В то же время в центре физической мысли оказалась открытая Менделеевым периодичность химических свойств элементов. Отыскивая причины этих явлений, Ф. включила новые разделы — атомную и ядерную физику и затем физику элементарных частиц. В теоретической физике в первой половине 20 в. произошел отход от осн. классических понятий и идей, связанный с теорией относительности и с квантовой механикой. Совр. физика, достигшая колоссальных успехов, оказывает несравнимое с прошлым воздействие на технику и общественную жизнь. В течение всего развития Ф. была тесно связана с философией. В древности физические сведения и гипотезы были составной частью различных философских систем. Обобщение физических знаний, выросших на базе развития классической механики, послужило основой материалистических идей нового времени. В 19 в. анализ и обобщение физических открытий позволили Марксу и Энгельсу развить учение диалектического материализма. В 20 в. идеалистические направления, так же как и в предыдущие периоды, стремились использовать смену физических представлений для идеалистических, позитивистских, выводов (Физический идеализм). Анализ действительного смысла новых физических теорий в работе Ленина “Материализм а эмпириокритицизм” и дальнейшее развитие науки показали, что Ф. дает неопровержимые аргументы в пользу диалектического материализма и что применение философских идей марксизма в физических исследованиях сообщает им новые стимулы для исследования природы. ... смотреть

ФИЗИКА

ФИЗИКА (от греческого physis - природа), наука, изучающая строение, наиболее общие свойства материи и законы ее движения. В соответствии с изучаемым ви... смотреть

ФИЗИКА

ФИЗИКА (от греческого physis - природа), наука, изучающая строение, наиболее общие свойства материи и законы ее движения. В соответствии с изучаемым видом движения материальных объектов физика подразделяется на механику, электродинамику, оптику, относительности теорию, квантовую механику, квантовую теорию поля, термодинамику и статистическую физику; по характеру объектов различают физику элементарных частиц, физику ядер, атомов и молекул, физику газов, жидкостей и твердых тел, физику плазмы и т.п. Зарождение физики восходит к ранней античности [Демокрит, Аристотель, Лукреций Кар, Архимед (5 - 1 вв. до нашей эры]. Физика как наука начала складываться в 16 - 18 вв.в трудах создателей классической механики Г. Галилея, И. Ньютона и др. В конце 18 - середине 19 вв. были изучены электрические и магнитные явления (М. Фарадей, Х. Эрстед, А. Ампер), что завершилось созданием классической электродинамики (Дж. Максвелл) и на ее основе - электромагнитной теории света (Г. Герц). В середине 19 в. в результате анализа действия тепловых машин (С. Карно) и других тепловых явлений (Р. Майер, Дж. Джоуль, Г. Гельмгольц) были заложены основы термодинамики; в конце 19 в. микроскопический анализ физических систем с большим числом частиц привел к созданию статистической физики (Л. Больцман, Дж. Гиббс). На рубеже 19 и 20 вв. был обнаружен ряд явлений (дискретность атомных спектров, радиоактивность и законы теплового излучения), необъяснимых в рамках так называемой классической физики и положивших начало новому этапу в физике. В начале 20 в. были сформулированы основные положения квантовой физики (М. Планк, Э. Резерфорд, Н. Бор). В 20-х годах обнаружены волновые свойства микрочастиц и сформулированы основы квантовой механики (Л. де Бройль, Э. Шредингер, В. Гейзенберг), а также получила развитие теория гравитации на основе обобщения ранее созданной А. Эйнштейном (1905) теории относительности. К середине 20 в. относится овладение ядерной энергией, достигнуты значительные успехи в области физики элементарных частиц и физики твердого тела - создан транзистор (Дж. Бардин) и установлена физическая природа явлений сверхтекучести (П.Л. Капица, Л.Д. Ландау) и сверхпроводимости; получила развитие квантовая электроника (в том числе созданы лазеры). К числу наиболее актуальных проблем современной физики относятся, например, завершение теорий Великого объединения и Большого взрыва, а в практической области - разработка и применение высокотемпературных сверхпроводников. Физика лежит в основе радио, телевидения, электроэнергетики, техники связи и вычислительной техники, металлургии, разведки полезных ископаемых, осуществления космических полетов и др. Достижения физики оказывают существенное воздействие на развитие современной цивилизации в целом, например: создание ядерного оружия поставило под угрозу само существование человечества, но овладение ядерной энергетикой, прежде всего решение проблемы управляемого термоядерного синтеза, ведет к обеспечению человечества практически неограниченным источником энергии. <br>... смотреть

ФИЗИКА

ж.physics- пакетная физика- адронная физика- атомная физика- биологическая физика- вычислительная физика- квантовая физика- классическая физика- кометн... смотреть

ФИЗИКА

ФИЗИКАНауки делятся на две группы — на физику и собирание марок. Эрнест Резерфорд Существует лишь то, что можно измерить. Макс Планк Когда видишь уравн... смотреть

ФИЗИКА

фи́зика сущ., ж., употр. сравн. часто Морфология: (нет) чего? фи́зики, чему? фи́зике, (вижу) что? фи́зику, чем? фи́зикой, о чём? о фи́зике 1. Физико... смотреть

ФИЗИКА

physics* * *фи́зика ж.physicsфи́зика атмосфе́ры — aerophysicsа́томная фи́зика — atomic physicsфи́зика а́томного ядра́ — nuclear physicsфи́зика высо́... смотреть

ФИЗИКА

(греч. ta physika, от physis - природа), наука о природе, изучающая простейшие и вместе с тем наиб. общие свойства материального мира. По изучаемым объ... смотреть

ФИЗИКА

1) -и, ж. Наука, изучающая общие закономерности явлений природы, свойства и строение материи и законы ее движения.Теоретическая физика.|| чего. Раздел ... смотреть

ФИЗИКА

ФИЗИКА Науки делятся на две группы - на физику и собирание марок. Эрнест Резерфорд Существует лишь то, что можно измерить. Макс Планк Когда видишь уравнение Е = mс[sup]2[sup], становится стыдно за свою болтливость. Станислав Ежи Лец Эйнштейн объяснял мне свою теорию каждый день, и вскоре я уже был совершенно уверен, что он ее понял. Хаим Вейцман в 1929 г. - Я работаю с утра до вечера. - А когда же вы думаете? Диалог между молодым физиком и Эрнестом Резерфордом Если бы я мог упомнить названия всех элементарных частиц, я бы стал ботаником. Энрико Ферми В сущности, теоретическая физика слишком трудна для физиков. Давид Гильберт, математик Господь Бог не играет в кости. Альберт Эйнштейн о «принципе неопределенности» в квантовой механике Господь Бог изощрен, но не злонамерен. Альберт Эйнштейн Господь не только играет в кости, но к тому же забрасывает их порою туда, где мы их не можем не увидеть. Стивен Хокинг Не наше дело предписывать Богу, как ему следует управлять этим миром. Нильс Бор Во всем виноват Эйнштейн. В 1905 году он заявил, что абсолютного покоя нет, и с тех пор его действительно нет. Стивен Ликок Я физик и имею право на сохранение энергии. Хуго Штейнхаус Энергия любит материю, но изменяет ей с пространством во времени. Славомир Врублевский Если оно зеленое или дергается - это биология. Если воняет - это химия. Если не работает - это физика. «Краткий определитель наук» Ад должен быть изотермальным. В противном случае помещенные туда инженеры и физико-химики (а их там должно быть немало) смогли бы сконструировать тепловую установку, которая питала бы холодильник, с тем чтобы охладить часть своего окружения до любой заранее выбранной температуры. Генри Бент Два элемента, которые наиболее часто встречаются во Вселенной, - водород и глупость. Фрэнк Заппа... смотреть

ФИЗИКА

ФИЗИКА (греч . ta physika, от physis - природа), наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира. По изучаемым объектам физика подразделяется на физику элементарных частиц, атомных ядер, атомов, молекул, твердого тела, плазмы и т. д. К основным разделам теоретической физики относятся: механика, электродинамика, оптика, термодинамика, статистическая физика, теория относительности, квантовая механика, квантовая теория поля. Физика начала развиваться еще до н. э. (Демокрит, Архимед и др.); в 17 в. создается классическая механика (И. Ньютон); к кон. 19 в. было в основном завершено формирование классической физики. В нач. 20 в. в физике происходит революция, она становится квантовой (М. Планк, Э. Резерфорд, Н. Бор). В 20-е гг. была разработана квантовая механика - последовательная теория движения микрочастиц (Л. де Бройль, Э. Шредингер, В. Гейзенберг, В. Паули, П. Дирак). Одновременно (в нач. 20 в.) появилось новое учение о пространстве и времени - теория относительности (А. Эйнштейн), физика делается релятивистской. Во 2-й пол. 20 в. происходит дальнейшее существенное преобразование физики, связанное с познанием структуры атомного ядра, свойств элементарных частиц (Э. Ферми, Р. Фейнман, М. Гелл-Ман и др.), конденсированных сред (Д. Бардин, Л. Д. Ландау, И. Н. Боголюбов и др.). Физика стала источником новых идей, преобразовавших современную технику: ядерная энергетика (Н. В. Курчатов), квантовая электроника (Н. Г. Басов, А. М. Прохоров и Ч. Таунс), микроэлектроника, радиолокация и др. возникли и развились в результате достижений физики.<br><br><br>... смотреть

ФИЗИКА

ФИЗИКА (греч. ta physika - от physis - природа), наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира. По изучаемым объектам физика подразделяется на физику элементарных частиц, атомных ядер, атомов, молекул, твердого тела, плазмы и т. д. К основным разделам теоретической физики относятся: механика, электродинамика, оптика, термодинамика, статистическая физика, теория относительности, квантовая механика, квантовая теория поля. Физика начала развиваться еще до н.э. (Демокрит, Архимед и др.); в 17 в. создается классическая механика (И. Ньютон); к кон. 19 в. было в основном завершено формирование классической физики. В нач. 20 в. в физике происходит революция, она становится квантовой (М. Планк, Э. Резерфорд, Н. Бор). В 20-е гг. была разработана квантовая механика - последовательная теория движения микрочастиц (Л. де Бройль, Э. Шредингер, В. Гейзенберг, В. Паули, П. Дирак). Одновременно (в нач. 20 в.) появилось новое учение о пространстве и времени - теория относительности (А. Эйнштейн), физика делается релятивистской. Во 2-й пол. 20 в. происходит дальнейшее существенное преобразование физики, связанное с познанием структуры атомного ядра, свойств элементарных частиц (Э. Ферми, Р. Фейнман, М. Гелл-Ман и др.), конденсированных сред (Д. Бардин, Л. Д. Ландау, И. Н. Боголюбов и др.). Физика стала источником новых идей, преобразовавших современную технику: ядерная энергетика (Н. В. Курчатов), квантовая электроника (Н. Г. Басов, А. М. Прохоров и Ч. Таунс), микроэлектроника, радиолокация и др. возникли и развились в результате достижений физики.<br>... смотреть

ФИЗИКА

гр. природа) — наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира. По изучаемым объектам подразделяется на физику: элементарных частиц, атомных ядер, атомов, молекул, твердого тела, плазмы и т.д. К основным разделам теоретической физики относятся: механика, электродинамика, оптика, термодинамика, статистическая физика, теория относительности, квантовая механика, квантовая теория поля. (См. Механика квантовая, Оптика волновая, Оптика геометрическая, Теория относительности, Термодинамика). Начало развития физики связано с именами Демокрита (р. ок. 470до н. э.), Архимеда и др.; в 17 в. И. Ньютон создает классическую механику. В нач. 20 в. рождается квантовая физика М. Планка (1858 — 1947), Э. Резерфорда (1871 — 1937), Н. Бора (1885 — 1962). В 20-x гг. была разработана квантовая механика — теория движения микрочастиц Л. де Бройля (1892 — 1987), Э. Шредингера (1887 — 1961), В. Гейзенберга (1901 — 1976), В. Паули (1900 — 1958), П. Дирака (1902 — 1984). Одновременно появилось новое учение о пространстве и времени — теория относительности А. Эйнштейна (1879 — 1955). Во 2-й пол. 20 в. физическое знание обогащается познанием структуры атомного ядра, свойств элементарных частиц Э. Ферми (1863 — 1945) и др., конденсированных сред Л. Д. Ландау (1908 — 1968) и др. (См. Атом, Частицы элементарные). Физика составляет научный фундамент современной техники и ее развития, включая такие направления, как ядерная энергетика, космическая техника, квантовая электроника, вычислительная техника, разработка наукоемких, ресурсосберегающих технологий. ... смотреть

ФИЗИКА

- (греч. ta physika - от physis - природа), наука о природе,изучающая простейшие и вместе с тем наиболее общие свойства материальногомира. По изучаемым объектам физика подразделяется на физику элементарныхчастиц, атомных ядер, атомов, молекул, твердого тела, плазмы и т. д. Косновным разделам теоретической физики относятся: механика,электродинамика, оптика, термодинамика, статистическая физика, теорияотносительности, квантовая механика, квантовая теория поля. Физика началаразвиваться еще до н. э. (Демокрит, Архимед и др.); в 17 в. создаетсяклассическая механика (И. Ньютон); к кон. 19 в. было в основном завершеноформирование классической физики. В нач. 20 в. в физике происходитреволюция, она становится квантовой (М. Планк, Э. Резерфорд, Н. Бор). В20-е гг. была разработана квантовая механика - последовательная теориядвижения микрочастиц (Л. де Бройль, Э. Шредингер, В. Гейзенберг, В. Паули,П. Дирак). Одновременно (в нач. 20 в.) появилось новое учение опространстве и времени - теория относительности (А. Эйнштейн), физикаделается релятивистской. Во 2-й пол. 20 в. происходит дальнейшеесущественное преобразование физики, связанное с познанием структурыатомного ядра, свойств элементарных частиц (Э. Ферми, Р. Фейнман, М.Гелл-Ман и др.), конденсированных сред (Д. Бардин, Л. Д. Ландау, И. Н.Боголюбов и др.). Физика стала источником новых идей, преобразовавшихсовременную технику: ядерная энергетика (Н. В. Курчатов), квантоваяэлектроника (Н. Г. Басов, А. М. Прохоров и Ч. Таунс), микроэлектроника,радиолокация и др. возникли и развились в результате достижений физики.... смотреть

ФИЗИКА

ФИЗИКА(от древнегреч. physis - природа). Древние называли физикой любое исследование окружающего мира и явлений природы. Такое понимание термина "физика" сохранилось до конца 17 в. Позднее появился ряд специальных дисциплин: химия, исследующая свойства вещества, обусловленные особенностями его атомной структуры, биология, изучающая живые организмы и т.д. Помимо традиционных предметов исследования, о которых пойдет речь ниже, физика занимается столь разными проблемами, как поведение смазки в машинах, процессы образования химических связей, хранение и передача генетической информации в живых системах и т.д. Объединяющий принцип физики как науки кроется не столько в предметах исследования, сколько в подходе к их изучению, и этим физика отличается от других наук. Опираясь на определенные аксиомы и гипотезы, проводя эксперименты и используя математические методы, она стремится объяснить все многообразие природных явлений исходя из небольшого числа взаимосогласующихся принципов. Физик надеется, что, когда о природных явлениях станет известно достаточно много и когда они будут достаточно хорошо поняты, множество других, на первый взгляд разрозненных и не связанных с ними фактов уложатся в простую, допускающую математическое описание схему.См. также:ФИЗИКА: РАННЯЯ ИСТОРИЯ ФИЗИКИФИЗИКА: ВОЗРОЖДЕНИЕФИЗИКА: ПРИРОДА КАК МЕХАНИЗМФИЗИКА: ПРИРОДА КАК ВЗАИМОДЕЙСТВУЮЩИЕ ПОЛЯФИЗИКА: СОВРЕМЕННАЯ ФИЗИКА... смотреть

ФИЗИКА

1) phisics2) physics– атомная физика– квантовая физика– нейтронная физика– прикладная физика– физика атмосферы– физика Земли– физика кристаллов– физика... смотреть

ФИЗИКА

(греч. tа physika - наука о природе, от physis - природа) - наука о строении материи и о простейших формах её движения и взаимодействия. Совр. Ф. иссле... смотреть

ФИЗИКА

— наука, изучающая фундаментальные и наиболее общие свойства и законы движения объектов материального мира. Понятия физики и физические законы — основа всего естествознания. Термин «физика» (от греческого physis — природа) введен в науку Аристотелем. Развитие физики как современной науки началось после обоснования Н. Коперником гелиоцентрической системы мира: физика Аристотеля противоречила этой системе. Принципиальной важности шаг сделан Г. Галилеем, который превратил физику в экспериментальную науку. И. Ньютон ввел в физическую теорию математический аппарат изобретенного им (и независимо от него Г. Лейбницем) дифференциального и интегрального исчисления. Используя синтез экспериментальных и теоретических методов, Ньютон создал классическую механику, которая к началу XIX в. приобрела современную форму. Целью физики является формулировка общих законов природы и объяснение конкретных явлений. Основные разделы физики: классическая механика, термодинамика и статистическая физика, теория электромагнетизма, теория относительности, квантовая механика. Физика служит научной основой большого числа технических наук и приложений (гидромеханика, теория тепломассобмена, техническая механика, микроэлектроника и др.). (См. физическая реальность). Л.В. Лесков... смотреть

ФИЗИКА

ФИЗИКА ж. греч. наука о природе, о законах и явлениях ее: обычно разумеют природу безорудную, мертвую. Физические силы природы, противопол. химические, а более органические; это: тяготенье тел, притяженье плоскостей, явления света, тепла, магнитной, электрической силы и пр. Физические силы человека, телесные, противопол. духовные, нравственные. Физическая география, наука о наружном, природном виде земли, ее образовании и естественных на ней явлениях. Физико-математический факультет университета, заключающий в себе эти две науки и вспомогательные к ним. Физик, ученый, занимающийся физикой. Физикат, врачебная управа в обеих столицах. Физиономия ж. лицо, лик, облик, рода, стар. рожай и рожей м. черты и выраженье лица. Ни одной человеческой физиономии (нет фигур в картах). Физиономика, наука или искусство разгадывать по лицу и телу свойства и качества человека. Физионом, физиономик, физиономист м. физиономистка ж. кто занимается физиономикой, изучает физиономические признаки. Физиография ж. описанье произведений природы. Физиология, наука о жизни орудных тел, в правильном, здоровом их состоянии. Фазиологические чтения, опыты. Физиолог, ученый, изучивший сей предмет. <br><br><br>... смотреть

ФИЗИКА

Французское – physique.Немецкое – Physik.Английское – physics.Латинское – physica (наука о природе).Греческое – physis (природа).Слово «физика» – грече... смотреть

ФИЗИКА

ФИЗИКА (греч. physis — природа) — наука о свойствах и законах движения материальных частиц, вещества и поля, о строении атомов, о гравитационных, электрических, магнитных и т.п. взаимодействиях и о молекулярных процессах (в древности под словом "физика" понималась вся совокупность сведений о природе). Совр. физика развивается с конца XIX — начала XX в., когда было обнаружено множество новых, ранее неизвестных физических явлений — возникновение и распространение радиосигналов, рентгеновских лучей, радиоактивность. Возникают новые разделы науки — атомная и ядерная физики, а затем и физика элементарных частиц. В теоретической физике в первой половине XX в. происходит отход от осн. классических понятий и идей, связанный с теорией относительности и квантовой механикой. Физика сегодня, достигшая колоссальных успехов, оказывает несравнимое с прошлым воздействие на технику и общественную жизнь. В теоретической уфологии физические сведения и гипотезы являются составной частью различных предположений, обоснований и выводов. Физика, тесно связанная с философией, сообщает новые стимулы для развития уфологии, и в частности, философского ее аспекта.<br><br><br>... смотреть

ФИЗИКА

▲ наука ↑ относительно, основа, материя физика - наука об основах строении материи.механика. статика. кинематика. динамика.магнитогидродинамика.термо... смотреть

ФИЗИКА

(от греч. physike, physis — природа) — наука, изучающая наиболее общие свойства материального мира, а именно: существующие формы материи и ее строение (атомы, молекулы, ядра, элементарные частицы, кристаллы, жидкости и пр.), взаимодействия и движения различных форм материи (электромагнитные, гравитационные, ядерные, слабые взаимодействия и многие другие процессы). Существенным фактором физики является пользование математикой (См. Физическая картина мира). Начала современного естествознания. Тезаурус. — Ростов-на-Дону.В.Н. Савченко, В.П. Смагин.2006. Синонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофизика, морда, мордализация, мордасово, мордасы, мордень, мордоплясия, мордофиля, мордуленция, моська, мурло, оптика, петрофизика, радиофизика, рожа, рыло, ряха, ряшка, свойство, сусалы, теорфизика, термодинамика, физиомордия, физиономия, физия, физподготовка, фотография, харьковская область, харя, хрюкало, электрогидродинамика, электродинамика, электрофизика... смотреть

ФИЗИКА

наука об общих формах движения и взаимодействия материальных объектов. Изучает элементарные частицы, атомные ядра, атомы, молекулы, твердые тела, жидкости, газы, плазму, а также физические поля. По методам исследования различают экспериментальную и теоретическую Ф. Фундаментальные физические теории: классическая механика, электродинамика, специальная теория относительности и квантовая механика. Законы Ф. составляют основу всего естествознания и являются теоретическим фундаментом всей современной техники. Астрономический словарь.EdwART.2010. Синонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофизика, морда, мордализация, мордасово, мордасы, мордень, мордоплясия, мордофиля, мордуленция, моська, мурло, оптика, петрофизика, радиофизика, рожа, рыло, ряха, ряшка, свойство, сусалы, теорфизика, термодинамика, физиомордия, физиономия, физия, физподготовка, фотография, харьковская область, харя, хрюкало, электрогидродинамика, электродинамика, электрофизика... смотреть

ФИЗИКА

I.(иноск.) — физическое развитие; физическая сила Ср. Этот господин пользуясь своею чрезмерною физикою, дозволил себе въехать мне в самую, так сказать,... смотреть

ФИЗИКА

fizik* * *жfizik (-ği)фи́зика пла́змы — plazma fiziğiфи́зика высо́ких эне́ргий — yüksek enerji fiziğiСинонимы: агрофизика, акустика, гидродинамика, кр... смотреть

ФИЗИКА

Физика (иноск.) физическое развитіе; физическая сила. Ср. Этотъ господинъ пользуясь своею чрезмѣрною физикою, дозволилъ себѣ въѣхать мнѣ въ самую, так... смотреть

ФИЗИКА

наук. фі́зика - атомная физика - квантовая физика - классическая физика - космическая физика - математическая физика - молекулярная физика - релятивистская физика - статистическая физика - строительная физика - теоретическая физика - техническая физика - физика атмосферы - физика кристаллов - физика полупроводников - химическая физика - экспериментальная физика - ядерная физика Синонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофизика, морда, мордализация, мордасово, мордасы, мордень, мордоплясия, мордофиля, мордуленция, моська, мурло, оптика, петрофизика, радиофизика, рожа, рыло, ряха, ряшка, свойство, сусалы, теорфизика, термодинамика, физиомордия, физиономия, физия, физподготовка, фотография, харьковская область, харя, хрюкало, электрогидродинамика, электродинамика, электрофизика... смотреть

ФИЗИКА

ФИЗИКА, наука, занимающаяся изучением ВЕЩЕСТВА и ЭНЕРГИИ. Физика стремится установить и объяснить их многочисленные формы и взаимосвязи. Современная фи... смотреть

ФИЗИКА

ж. fisica f - физика атмосферы- атомная физика- физика атомного ядра- физика высоких давлений- физика высоких энергий- физика грунтов- физика жидкого ... смотреть

ФИЗИКА

物理学 wùlǐxuéприкладная физика - 应用物理学теоретическая физика - 理论物理学Синонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнит... смотреть

ФИЗИКА

физика [гр. physike < physis природа] - наука о наиболее общих свойствах материального мира: о существующих формах материи и ее строении (физ. поля, эл... смотреть

ФИЗИКА

физика פִיזִיקָה נ'* * *פיסיקהСинонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофиз... смотреть

ФИЗИКА

технические показатели инвестиционного проекта (например, в газовой отрасли – толщина стенки трубы, диаметр, рабочее давление, протяженность).Синонимы:... смотреть

ФИЗИКА

Заимств. в Петровскую эпоху из лат. яз., где physica «наука о природе» &LT; греч. physika — тж., суф. производного от physis «природа».Синонимы: агроф... смотреть

ФИЗИКА

ж.physique fядерная физика — physique nucléaireСинонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, м... смотреть

ФИЗИКА

фи́зика, фи́зики, фи́зики, фи́зик, фи́зике, фи́зикам, фи́зику, фи́зики, фи́зикой, фи́зикою, фи́зиками, фи́зике, фи́зиках (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») . Синонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофизика, морда, мордализация, мордасово, мордасы, мордень, мордоплясия, мордофиля, мордуленция, моська, мурло, оптика, петрофизика, радиофизика, рожа, рыло, ряха, ряшка, свойство, сусалы, теорфизика, термодинамика, физиомордия, физиономия, физия, физподготовка, фотография, харьковская область, харя, хрюкало, электрогидродинамика, электродинамика, электрофизика... смотреть

ФИЗИКА

ж. fisica прикладная / теоретическая физика — fisica applicata / teorica химическая физика — fisica chimica, fisiochimica ядерная физика — fisica nucleare Итальяно-русский словарь.2003. Синонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофизика, морда, мордализация, мордасово, мордасы, мордень, мордоплясия, мордофиля, мордуленция, моська, мурло, оптика, петрофизика, радиофизика, рожа, рыло, ряха, ряшка, свойство, сусалы, теорфизика, термодинамика, физиомордия, физиономия, физия, физподготовка, фотография, харьковская область, харя, хрюкало, электрогидродинамика, электродинамика, электрофизика... смотреть

ФИЗИКА

одна из осн. естеств. наук (наук о природе), основа совр. естествознания. Изучает наиболее общие свойства материи и формы ее движения (мех., тепловую, электромагнитную, атомную, ядерную). Имеет мн-во разделов (механика, молекулярная Ф., электромагнетизм, оптика, атомная Ф., ядерная Ф., Ф. элементарных частиц) и видов. Фундаментальными теориями Ф. явл.: механика Ньютона, теория электромагнитного поля, спец. и общая теория относительности (см. Относительности теория), квантовая механика. Ф. явл. наиболее развитой наукой в методол. плане. Ее з-ны, методы, методол. принципы, теории и концепции широко используются в др. науках. Ф.М.Дягилев ... смотреть

ФИЗИКА

f.physicsСинонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофизика, морда, мордализа... смотреть

ФИЗИКА

1) Орфографическая запись слова: физика2) Ударение в слове: ф`изика3) Деление слова на слоги (перенос слова): физика4) Фонетическая транскрипция слова ... смотреть

ФИЗИКА

жfísica fСинонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофизика, морда, мордализа... смотреть

ФИЗИКА

ф'изика, -иСинонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофизика, морда, мордали... смотреть

ФИЗИКА

жPhysik fСинонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофизика, морда, мордализа... смотреть

ФИЗИКА

(1 ж)Синонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофизика, морда, мордализация,... смотреть

ФИЗИКА

fizikaСинонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофизика, морда, мордализация... смотреть

ФИЗИКА

физика ж Physik fСинонимы: агрофизика, акустика, гидродинамика, кристаллооптика, лицо, личность, магнитогидродинамика, механика, микрофизика, морда, м... смотреть

ФИЗИКА

сущ. жен. рода, только ед. ч.одна из наук естествознания о свойствах и строении материи, формах ее движения и измененияфізика¤ квантовая физика -- кван... смотреть

ФИЗИКА

ФИЗИКА физики, ж. (греч. physike). 1. только ед. Основная наука естествознания о формах движения материи, ее свойствах и о явлениях неорганической природы, состоящая из ряда дисциплин (механика, термодинамика, оптика, акустика, электромагнетизм и т. д.). Теоретическая физика. Прикладная физика. Молекулярная физика. 2. Лицо, физиономия (простореч. вульг.). Он закричал: "Эй, гляди, математик, не добрались бы когда-нибудь за это до твоей физики". Лесков.<br><br><br>... смотреть

ФИЗИКА

фізіка, -кі- физика атомная- физика атомного ядра- физика высоких энергий- физика математическая- физика молекулярная- физика низкотемпературной плазмы... смотреть

ФИЗИКА

физика, ф′изика, -и, ж.1. Одна из основных областей естествознания наука о свойствах и строении материи, о формах её движения и изменения, об общих зак... смотреть

ФИЗИКА

корень - ФИЗ; суффикс - ИК; окончание - А; Основа слова: ФИЗИКВычисленный способ образования слова: Суффиксальный∩ - ФИЗ; ∧ - ИК; ⏰ - А; Слово Физика с... смотреть

ФИЗИКА

ФИЗИКА1, -и, ас. 1. Одна из основных областей естествознания — наука о свойствах и строении материи, о формах её движения и изменения, об общих закономерностях явлений природы. Теоретическая физика Прикладная физика 2. Сами такие свойства и строение, формы движения и изменения. Физика твёрдого тела. Физика плазмы. Физика ядра. || прш. физический, -ая, -ое.... смотреть

ФИЗИКА

физика I фи́зикаI, уже у Ф. Прокоповича; см. Смирнов 307. Через польск. fizyka из лат. рhуsiса "наука о природе" от греч. τὰ φυσικά или φυσικη (ἑπιστή... смотреть

ФИЗИКА

Rzeczownik физика f fizyka f физик m fizyk m

ФИЗИКА

физика сущ.жен.неод. (1)ед.твор.которые различны языком, нравами, и физикою, и моралью.Пс22.

ФИЗИКА

I физикаI, уже у Ф. Прокоповича; см. Смирнов 307. Через польск. fizyka из лат. рhуsiса "наука о природе" от греч. или () от "природа".II физикаII "рожа, физиономия" (Лесков). Преобразование в семинаристском жаргоне слова физиономия под влиянием физика I; ср. физиомордия.... смотреть

ФИЗИКА

физика личность, мордоплясия, сусалы, мордализация, мордофиля, харьковская область, мордасово, мордень, ряшка, рыло, физия, морда, мордуленция, лицо, мурло, рожа, харя, физиономия, фотография, хрюкало, моська, ряха, физиомордия, мордасы, свойство<br><br><br>... смотреть

ФИЗИКА

ж.física fприкладная физика — física aplicada

ФИЗИКА

- (от греч. physis - природа) - наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира. Вследствие этой общности Ф. и ее законы лежат в основе всего естествознания.... смотреть

ФИЗИКА

Ударение в слове: ф`изикаУдарение падает на букву: иБезударные гласные в слове: ф`изика

ФИЗИКА

ж. physique f ядерная физика — physique nucléaire

ФИЗИКА

Фи́зика. Заимств. в Петровскую эпоху из лат. яз., где physica «наука о природе» < греч. physika — тж., суф. производного от physis «природа».

ФИЗИКА

фізіка, жен.теоретическая физика — тэарэтычная фізікаприкладная физика — прыкладная фізікафизика атома — фізіка атама

ФИЗИКА

сущ.жен.физика (матери тытймӗпе улшйнйвӗсене тӗпчекен йслйлйх); ядерная физика ядро физики; учебник физики физика учебнике

ФИЗИКА

фи'зика, фи'зики, фи'зики, фи'зик, фи'зике, фи'зикам, фи'зику, фи'зики, фи'зикой, фи'зикою, фи'зиками, фи'зике, фи'зиках

ФИЗИКА

Фізіка, теоретическая физика — тэарэтычная фізіка прикладная физика — прыкладная фізіка физика атома — фізіка атама

ФИЗИКА

{fys'i:k}1. fysik

ФИЗИКА

f; ks физикfysiikka

ФИЗИКА

fizik - атомная физика - квантовая физика - физика твердого тела - ядерная физика

ФИЗИКА

فيزيك

ФИЗИКА

физикаж ἡ φυσική: ядерная ~ ἡ πυρηνική φυσική· теоретическая ~ ἡ θεωρητική φυσική.

ФИЗИКА

ж физика; ядерная ф. атом-төш физикасы; теоретическая ф. теоретик физика

ФИЗИКА

ФИЗИКА2, -и и ФИЗИЯ, -и, ж. (прост.). То же, что лицо (в 1 значение).

ФИЗИКА

физика = ж. physics; ядерная физика nuclear physics.

ФИЗИКА

Физика- physica; doctrina de rerum natura;

ФИЗИКА

ж.physics

ФИЗИКА

Фи́зикаfizikia (-)

ФИЗИКА

physique f

ФИЗИКА

физика ф`изика, -и

ФИЗИКА

ФИЗИКА - лицо

ФИЗИКА

физика || физический

ФИЗИКА

Физик

ФИЗИКА

физика ж η φυσική

ФИЗИКА

Наука о природе

ФИЗИКА

физика физика

ФИЗИКА

ж. Physik f.

ФИЗИКА

ж. физика.

ФИЗИКА

{N} ֆիզիկա

ФИЗИКА

фізіка, -кі

ФИЗИКА

ж. физика

ФИЗИКА

Ж fizika.

ФИЗИКА

ж.фи́зика

ФИЗИКА

• fyzika

ФИЗИКА

Füüsika

ФИЗИКА

физика.

ФИЗИКА

физика

ФИЗИКА

физика

ФИЗИКА

физика

T: 294