РАССЕЯНИЕ ВОЛН НА СЛУЧАЙНОЙ ПОВЕРХНОСТИ

- рассеяние волн на статистически неровной границе раздела двух сред. Р. в. на с. п. оказывает существ. влияние на характер распространения радиоволн в естеств. условиях: рассеяние на неровностях рельефа земной поверхности, взволнованной поверхности моря, ниж. границе ионосферы приводит к флуктуациям параметров радиосигналов. При передаче сигналов по вол-новодным или квазиоптич. линиям передачи шероховатость поверхности является причиной появления паразитных мод, искажения передаваемых сигналов и их дополнит. затухания. При работе радиолокац. и радиометрич. систем Р. в. на с. п., с одной стороны, является источником пассивных помех, маскирующих полезный сигнал, а с другой - содержит полезную информацию о параметрах рассеивающей поверхности, являясь физ. основой методов дистанц. зондирования окружающей среды, напр. для определения по радиолокац. (радиометрич.) данным параметров морского волнения, состояния ледового и снежного покрова, степени расчленённости рельефа и т. д. В задачах гидро- и сейсмоакустики аналогичную роль играет рассеяние звука на поверхности и дне океана, на др. границах раздела сред с различающимися физ. параметрами. В оптике Р. в. на с. п. приводит к нарушению законов зеркального отражения и преломления, является причиной искажений изображения в реальных оптич. системах и диффузного рассеяния света разл. матовыми поверхностями. В физике твёрдого тела рассеяние разл. квазичастиц, трактуемых как волны, на естеств.шероховатой поверхности образца приводит к уменьшению времени их жизни, затуханию собств. состояний (напр., магн. поверхностных уровней), влияет на характер скин-эффекта и др. кинетич. явлений (электро- и теплопроводность тонких плёнок, расширение линий резонансных переходов между разл. квантовыми состояниями и т. д.).

4027-41.jpg

Отклонения неровной поверхности S (рис.) от ср. плоскости г = 0 описываются случайной ф-цией z = = x(r), где r = ( х, у), усреднение по ансамблю реализаций этой ф-ции обозначается <...>. Скалярное волновое поле U(R, t), R =(r, z) (либо любая компонента векторного) в результате Р. в. на с. п. также становится случайным и может быть представлено в виде суммы среднего (когерентного) поля <U> и флуктуаци-онного (некогерентного) поля и. Для описания Р. в. на с. п. в качестве первичного поля достаточно, в силу принципа суперпозиции, рассмотреть плоскую монохроматич. волну Ui = exp[i(kR - wt)] с волновым вектором k и частотой w, падающую из верх. полупространства под углом q0 на границу раздела двух сред. Ниже описываются только отражённые волны, рассеянные в верх. полупространство. Для решения задачи о Р. в. на с. п. используют след. приближённые методы.

Метод малых возмущений (ММВ) применяют для достаточно низких и пологих неровностей:

4027-42.jpg

Здесь P - параметр Рэлея, 4027-43.jpg - дисперсия высот неровностей, l- их радиус корреляции,4027-44.jpg- дисперсия наклонов. При скользящем распространении (q0 : p/2) вместо P следует требовать малости параметра Фейнберга:4027-45.jpg Рассеянное волновое поле U представляют в виде ряда U= U0.+ u1 + u2 + ···, где U0 - отражённое (преломлённое) поле на плоской границе (x = 0), а и п ~~ xn - малые поправки к U0. Если ограничиться только первыми двумя слагаемыми в ряде ММВ, то ср. поле 4027-46.jpg совпадает с невозмущённым U0, а флуктуац. поле и- с однократно рассеянным полем и1 (борновское приближение).

Рассеивающие свойства неровной поверхности характеризуют уд. эфф. поверхностью рассеяния 4027-47.jpg, к-рая определяется как умноженное на 4p отношение ср. потока энергии флуктуац. поля и, рассеянного с единицы площади S0 в . единичный телесный угол в направлении b, к плотности потока энергии в падающей волне, распространяющейся в направлении a =k/k:

4027-48.jpg

Здесь R- расстояние от центра рассеивающей площадки S0 до точки наблюдения R, находящейся в дальней зоне (зоне Фраунгофера); q= = k(b-a) - вектор рассеяния, 4027-49.jpg - его проекция на плоскость z = 0, Sx(q)- пространств. спектральная плотность неровностей, связанная преобразованием Фурье с их корреляционной функцией 4027-50.jpg , для пространственно однородной статистически неровной поверхности

4027-51.jpg

Явный вид не зависящего от параметров неровностей множителя Q(a, b) определяется конкретными условиями. Напр., при рассеянии звука на абсолютно мягкой поверхности (U|S =0)

4027-52.jpg

на абсолютно жёсткой поверхности (9Ul9n|S =0)

4027-53.jpg

здесь f - угол между плоскостью падения (a, N0) и плоскостью рассеяния (b, N0), N0- орт вдоль оси Оz. При рассеянии эл.-магн. волны на идеально проводящей поверхности

4027-54.jpg,

где p0, p.- единичные векторы поляризации падающей волны и приёмника, ортогональные к направлениям распространения волн: ( р0a) = ( рb) = 0. При обратном рассеянии b = -a (в радиолокации) на неровной границе раздела двух сред с диэлектрич. проницаемостя-ми e1 = 1 и e2 = e:

4027-55.jpg

Здесь V г, (q0) - коэф. отражения Френеля для горизонтальной (Г) и вертикальной (В) поляризации (см. Френеля формулы).

Р. в. на с. п. в борновском приближении, как следует из ф-лы (1), является резонансным: из направления a в направление b рассеивает только одна пространств. гармоника из спектра 4027-56.jpg неровностей поверхности, волновой вектор к-рой совпадает с проекцией вектора рассеяния q. на плоскость z = 0.

Модифицированная теория возмущений (МТВ) учитывает при расчёте ср. поля 4027-57.jpgмногократное рассеяние. Отражение ср. поля 4027-58.jpgот случайной поверхности происходит так же, как и от плоской границы раздела z = 0, но с эфф. поверхностным импедансом4027-59.jpg, зависящим от длины волны l и направления облучения, т. е. при Р. в. на с. п. имеет место дисперсия пространственная. Для абсолютно жёсткой поверхности 4027-60.jpg выражается через интеграл по всем направлениям рассеяния b от величины 4027-61.jpg, аналитически продолженной 4027-62.jpgв область комплексных углов рассеяния

4027-63.jpg

где 4027-64.jpg4027-65.jpg

4027-66.jpg 0). Активная часть импеданса 4027-67.jpg пропорциональна энергии, рассеянной во флуктуац. поле, и определяется интегралом (2) только по вещественным углам рассеяния 4027-68.jpg, рассеяние происходит в однородные уходящие от поверхности волны; реактивная часть 4027-69.jpg связана с рассеянием в неоднородные волны 4027-70.jpg , ею обусловлены сдвиг фаз между падающей и отражённой волнами и замедление поверхностных волн, распространяющихся над шероховатой жёсткой поверхностью.

При рассеянии эл.-магн. волн статистически неровная поверхность по отношению к когерентному полю эквивалентна импедансной, вообще говоря, анизотропной плоскости, описываемой тензором поверхностного импенданса 4027-71.jpg: m, v = x, у, связывающего тангенц. компоненты ср. электрич. E. и магн. H полей:

4027-72.jpg

для идеально проводящей поверхности (|e|:,)

4027-73.jpg

При рассеянии волн на изменяющейся во времени границе раздела, возмущения к-рой можно представить в виде суперпозиции бегущих плоских волн с волновыми векторами p и частотами W(p), происходит изменение частоты рассеянных волн по сравнению с частотой падающей волны w. В борновском приближении спектр рассеянного поля в зоне Фраунгофера состоит из двух комбинац. частот:

4027-74.jpg

Затухание поверхностных волн [ImW(p).0], а также след. порядки в ММВ отражаются в расширении спектра рассеянного поля и появлении др. комбинац. частот.

В ближней зоне (зоне Френеля) интерференция рассеянных волн приводит к флуктуациям амплитуды и фазы волнового поля, характер к-рых определяется значением волнового параметра D = R/kl2cosq0, равного по порядку величины ср. числу неровностей в первой зоне Френеля: при D4027-75.jpg1 - флуктуации амплитуды малы, а дисперсия флуктуации фазы равна параметру Рэлея Р; при D 4027-76.jpg 1 - флуктуации амплитуды и фазы некоррелиро-ваны, а их дисперсии совпадают и равны Р/2.

Метод касательной плоскости (МКП), или метод Кирхгофа, применяют для решения задач о Р. в. на с. п. с большими по сравнению с l неровностями. При этом допустимы сколь угодно большие значения параметра Рэлея, однако неровности должны быть достаточно гладкими -kacos3q'4027-78.jpg1, где а- характерный радиус кривизны поверхности, а q' - локальный угол падения, соsq' = -( па). В основе МКП лежит предположение о том, что поле U в каждой точке RS поверхности S можно представить в виде суммы полей падающей волны и волны, зеркально отражённой от плоскости, касательной к поверхности в точке Rs; поле в произвольной точке R затем определяют по Грина формуле в соответствии с принципом Гюйгенса - Френеля. После усреднения по ансамблю реализаций x(r )когерентное поле <U> распространяется только в направлении зеркального отражения от ср. плоскости z = 0, отличаясь от поля нулевого приближения U0 на эфф. коэф. отражения V Э:

4027-79.jpg

w(x) - плотность распределения вероятности случайных отклонений x от ср. плоскости z = 0. Для нормальной случайной поверхности, отклонения к-рой от ср. плоскости соответствуют Гаусса распределению, V Э= exp (-P/2).

Некогерентное рассеяние в заданном направлении при больших значениях параметра Рэлея определяется вероятностью зеркально отражающих из a в b наклонов поверхности g3 = -q^/qz (с нормалью n3 = q/q):

4027-80.jpg


где wg - плотность распределения вероятностей наклонов g =4027-81.jpg, a V(q3) - коэф. отражения Френеля при зеркальных углах падения, cosq3 = (n3b) = - (n3a).

Учёт затенений поверхности в рамках МКП сводится к тому, что в ф-лах (3) и (4) под ф-циями w(x) и wg. следует понимать плотности распределения высот и наклонов только освещённых (но отношению к направлениям a и b) участков поверхности. Величина 4027-82.jpg в форме (4) не зависит от длины волны излучения и по сути является следствием применения геометрической оптики метода. Расчёт дифракц. эффектов приводит к поправкам к МКП ~ s2/k2l4, а для эл.-магн. волн в радио-локац. случае (b = -a) - к появлению деполяризации рассеянного поля, что не удаётся выявить в рамках ММВ и МКП.

Двухмасштабную модель (ДММ) применяют для интерпретации эксперим. данных по Р. в. на с. п. с широким спектром вертикальных и горизонтальных масштабов неровностей, когда не выполняются условия применимости ни ММВ, ни МКП. Шероховатую поверхность в ДММ рассматривают как суперпозицию мелкомасштабной "ряби" (для расчёта рассеяния на к-рой применим ММВ) и гладких крупномасштабных неровностей z = Z(r )с наклонами 4027-83.jpg удовлетворяющими МКП. В результате 4027-84.jpg представляется в виде суммы (4) (где следует заменить g на Г) и усреднённой по наклонам крупномасштабной поверхности Г величины 4027-85.jpg рассчитанной по ф-ле (1) для шероховатой плоскости со ср. нормалью N = (N0- Г)(1 + Г2)-1/2:

4027-86.jpg

где w( Г) - плотность распределения вероятностей наклонов Г. С помощью ДММ описывают рассеяние радиоволн взволнованной морской поверхностью и поверхностью Луны, рассеяние звука поверхностью и дном океана.

Метод малых наклонов (ММН) применяют для расчёта Р. в. на с. п. с неровностями произвольной высоты, но достаточно пологими 4027-87.jpg. Для низких неровностей ММН приводит к ф-лам ММВ, для высоких - к МКП. Первый член ряда по g0 получается из ф-лы (1) борновского приближения для 4027-88.jpg (определённого для полного рассеянного поля, а не только флуктуационного) заменой:

4027-89.jpg

где Dx(r) = < [x(r+r) - x(r)]2 >- структурная ф-ция неровностей нормальной (гауссовой) поверхности. Учёт когерентности волн, испытывающих многократные рассеяния на сильношероховатой поверхности и распространяющихся в противоположных направлениях по одним и тем же траекториям, приводит к явлению усиления обратного рассеяния, аналогичного тому, к-рое имеет место при рассеянии волн на объёмных неод-нородностях. См. также Дифракция волн, Рассеяние звука, Рассеяние света.

Лит.: Стретт Дж. В. (лорд Рэлей), Теория звука, пер. с англ., 2 изд., т. 2, М., 1955; Фейнберг Е. Л., Распространение радиоволн вдоль земной поверхности, М., 1961; Басе Ф. Г., Fукс И. М., Рассеяние полн на статистически неровной поверхности, М., 1972; Шмелев А. Б., Рассеяние волн статистически неровными поверхностями, "УФЫ", 1972, т. 106, с. 459; Введение в статистическую радиофизику, ч. 2- Рытов С. М., Кравцов IО. А., Татарский В. И., Случайные поля, М., 1978, гл. 9; Исимару А., Распространение и рассеяние волн в случайно-неоднородных средах, пер, с англ., т. 2, М., 1981, гл. 21;Бреховских Л. М., Лысанов Ю. П., Теоретические основы акустики океана, Л., 1982,

И. М. Фукс.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия..1988.



Физическая энциклопедия 

РАССЕЯНИЕ ЗВУКА →← РАССЕЯНИЕ ВОЛН

T: 0.194850113 M: 3 D: 3